高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

螺旋盘管内单相流致振动机制实验研究

汪宁远 陈德奇 刘汉周 步珊珊

汪宁远, 陈德奇, 刘汉周, 步珊珊. 螺旋盘管内单相流致振动机制实验研究[J]. 核动力工程, 2024, 45(S2): 174-179. doi: 10.13832/j.jnpe.2024.S2.0174
引用本文: 汪宁远, 陈德奇, 刘汉周, 步珊珊. 螺旋盘管内单相流致振动机制实验研究[J]. 核动力工程, 2024, 45(S2): 174-179. doi: 10.13832/j.jnpe.2024.S2.0174
Wang Ningyuan, Chen Deqi, Liu Hanzhou, Bu Shanshan. Experimental Study on Single-phase Flow-induced Vibration Mechanism in Helical Coiled Tubes[J]. Nuclear Power Engineering, 2024, 45(S2): 174-179. doi: 10.13832/j.jnpe.2024.S2.0174
Citation: Wang Ningyuan, Chen Deqi, Liu Hanzhou, Bu Shanshan. Experimental Study on Single-phase Flow-induced Vibration Mechanism in Helical Coiled Tubes[J]. Nuclear Power Engineering, 2024, 45(S2): 174-179. doi: 10.13832/j.jnpe.2024.S2.0174

螺旋盘管内单相流致振动机制实验研究

doi: 10.13832/j.jnpe.2024.S2.0174
详细信息
    作者简介:

    汪宁远(1992—),男,博士研究生,现主要从事反应堆热工水力学及流致振动方面的研究,E-mail: ningyuanwang720@foxmail.com

    通讯作者:

    陈德奇, E-mail: chendeqi@cqu.edu.cn

  • 中图分类号: TL334

Experimental Study on Single-phase Flow-induced Vibration Mechanism in Helical Coiled Tubes

  • 摘要: 为研究螺旋盘管内单相流致振动响应演变规律,揭示面内和面外方向上的振动机制,本研究基于激光多普勒测量技术开展管内单相流致振动实验。通过开展不同入口流速下流致振动实验,结合模态分析结果,分析流速对螺旋盘管振动响应的影响,探究沿面内与面外方向上的振动响应特征。实验结果表明,螺旋盘管沿面内方向振动特性所受静力和质量有关,沿面外方向振动特性与系统质量有关。沿面外方向振动位移均方根(RMS)呈现随高度增加而减小的趋势,结合管内流体流动状态分析,揭示了管内二次流对螺旋盘管振动响应的影响机制。本研究结果能够为螺旋盘管内流致振动研究提供参考,并可为后续管内两相流致振动研究提供支撑。

     

  • 图  1  实验回路示意图

    Figure  1.  Schematic Diagram of Experimental Circuit

    图  2  实验本体示意图

    Figure  2.  Schematic Diagram of the Experimental Body

    图  3  不同入口流速下螺旋盘管振动位移

    Figure  3.  Vibration Displacement of Helical Coiled Tube under Different Inlet Flow Velocities

    图  4  螺旋盘管二次流示意图

    Figure  4.  Schematic Diagram of Secondary Flow of Helical Coiled Tube

    图  5  螺旋盘管P2处不同方向振动频率比

    Figure  5.  Vibration Frequency Ratio in Different Directions of Helical Coiled Tube at P2

    图  6  螺旋盘管各测点面内与面外方向振动频率比(v=2.5 m/s)

    Figure  6.  Vibration Frequency Ratio of In-plane and Out-of-plane Directions at Each Measuring Point of Helical Coiled Tube

    图  7  螺旋盘管P2处不同方向频谱(v=2.5 m/s)

    Figure  7.  Frequency Spectrum of Helical Coiled Tube at P2 in Different Directions

    图  8  螺旋盘管不同测点面外方向频谱(v=2.5 m/s)

    Figure  8.  Frequency Spectrum of Helical Coiled Tube at Different Measuring Points in Out-of-plane Direction

    表  1  实验工况表

    Table  1.   Experimental Conditions

    工况实验类型入口流速
    /( m·s−1)
    测点
    测量方向
    1模态实验P1面内、面外
    2模态实验P2面内、面外
    3模态试验P3面内、面外
    4流致振动1.0~2.5P1面内、面外
    5流致振动1.0~2.5P2面内、面外
    6流致振动1.0~2.5P3面内、面外
    下载: 导出CSV
  • [1] 韩金盛,刘滨,李文强. 铅冷快堆研究概述[J]. 核科学与技术,2018, 6(3): 87-97.
    [2] CIONCOLINI A, SANTINI L. Two-phase pressure drop prediction in helically coiled steam generators for nuclear power applications[J]. International Journal of Heat and Mass Transfer, 2016, 100: 825-834. doi: 10.1016/j.ijheatmasstransfer.2016.05.027
    [3] HARDIK B K, PRABHU S V. Heat transfer distribution in helical coil flow boiling system[J]. International Journal of Heat and Mass Transfer, 2018, 117: 710-728. doi: 10.1016/j.ijheatmasstransfer.2017.10.029
    [4] JO J C, JHUNG M J. Flow-induced vibration and fretting-wear predictions of steam generator helical tubes[J]. Nuclear Engineering and Design, 2008, 238(4): 890-903. doi: 10.1016/j.nucengdes.2006.12.001
    [5] YUAN H M, SOLBERG J, MERZARI E, et al. Flow-induced vibration analysis of a helical coil steam generator experiment using large eddy simulation[J]. Nuclear Engineering and Design, 2017, 322: 547-562. doi: 10.1016/j.nucengdes.2017.07.029
    [6] PAÏDOUSSIS M P, LI G X. Pipes conveying fluid: a model dynamical problem[J]. Journal of Fluids and Structures, 1993, 7(2): 137-204. doi: 10.1006/jfls.1993.1011
    [7] JUNG D, CHUNG J. In-plane and out-of-plane motions of an extensible semi-circular pipe conveying fluid[J]. Journal of Sound and Vibration, 2008, 311(1-2): 408-420. doi: 10.1016/j.jsv.2007.09.011
    [8] JUNG D, CHUNG J, MAZZOLENI A. Dynamic stability of a semi-circular pipe conveying harmonically oscillating fluid[J]. Journal of Sound and Vibration, 2008, 315(1-2): 100-117. doi: 10.1016/j.jsv.2008.01.062
    [9] DELGADO M. An experimental study on flow-induced vibration of a single and adjacent tubes within a model helical coil heat exchanger[D]. College Station: Texas A&M University, 2021.
    [10] PAÏDOUSSIS M P. Fluidelastic vibration of cylinder arrays in axial and cross flow: state of the art[J]. Journal of Sound and Vibration, 1981, 76(3): 329-360. doi: 10.1016/0022-460X(81)90516-2
    [11] TANG M, NI Q, WANG L, et al. Nonlinear modeling and size-dependent vibration analysis of curved microtubes conveying fluid based on modified couple stress theory[J]. International Journal of Engineering Science, 2014, 84: 1-10. doi: 10.1016/j.ijengsci.2014.06.007
    [12] IBRAHIM R A. Overview of mechanics of pipes conveying fluids—Part I: fundamental studies[J]. Journal of Pressure Vessel Technology, 2010, 132(3): 034001. doi: 10.1115/1.4001271
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  11
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-21
  • 修回日期:  2024-09-21
  • 刊出日期:  2025-01-06

目录

    /

    返回文章
    返回