Study on Impact Environment of Submarine under Combined Effect of Shock Wave and Bubble
-
摘要: 为探讨水下爆炸作用下潜艇及其设备的冲击环境,以提升潜艇的生命力。本文运用声-固耦合法计算了模型在水下爆炸载荷下的动态响应,讨论了水中冲击波的传播,并计算冲击波和气泡脉动联合作用下舱段平台的响应谱。对比不同潜深、炸药冲击因子、炸药攻角下各舱段平台响应,结合舱段板加速度曲线和响应谱曲线分析各参量变化对设备冲击环境的影响。研究结果表明,气泡脉动载荷会加剧平台响应,尤其是低频段响应。通过对不同工况下潜艇设备所处冲击环境的研究,为设备安装位置和生命力提升给出了合理化建议。Abstract: In order to investigate the impact environment of submarine and its equipment under underwater explosion and increase the vitality of the submarine, the dynamic response of the model under underwater explosion load is calculated by acoustic-structural coupling method. The propagation of shock wave in water is discussed, and the response spectrum of cabin platform under the combined action of shock wave and bubble pulsation is calculated. The platform response of each cabin under different diving depth, explosive impact factor and explosive attack angle is compared, and the influence of various parameters on the impact environment of equipment is analyzed by combining the acceleration curve and response spectrum curve of cabin plate. The simulation results show that the bubble load will aggravate the platform response, especially in the low frequency band. Therefore, through the study of the impact environment of submarine equipment under different conditions, this paper puts forward reasonable suggestions for the installation position and vitality improvement of the equipment.
-
Key words:
- C-S constitutive /
- Bubble load /
- Impact environment /
- Acoustic-structural coupling /
- Shock spectrum
-
表 1 模型尺寸参数
Table 1. Model Size Parameters
类型 型材尺寸/mm 外形 外径 3500 板壳 耐压壳 40 舱壁、平台 18 型材 外壳T型材 $ 100 \times 210 \times 8 \times 10 $① 平台T型材 $ 100 \times 210 \times 8 \times 10 $ 舱壁大尺寸加强筋 $ 120 \times 350 \times 30 \times 24 $ 舱壁小尺寸加强筋 $ 100 \times 210 \times 8 \times 10 $ 注:①高度×宽度×腹板厚度×翼板厚度 表 2 模型参数
Table 2. Model Parameters
参数名 参数值 参数名 参数值 ρ1/(kg·m−3) 7850 σy/MPa 632 E/Pa 2.1×1011 μ 0.3 表 3 工况设置
Table 3. Setting of Conditions
工况 药包质量/kg 潜深/m 冲击因子 攻角 爆距/m 1 400 150 1.0 90° 20.00 2 400 200 1.0 90° 20.00 3 400 150 0.7 90° 28.57 4 400 150 1.0 0° 20.00 表 4 最大响应谱的变化
Table 4. Variation of Maximum Response Spectrum Value
工况 最大位移/cm 最大速度谱/
( m·s−1)最大加速度谱/
( m·s−2)考虑气泡 76.3459 133.0172 98974 不考虑气泡 43.1551 120.0599 91956 变化率/% −43.47 −9.74 −7.14 表 5 最大响应谱随潜深的变化
Table 5. Variation of Maximum Response Spectrum Value with Depth
潜深/m 最大位移谱/cm 最大速度谱/
( m·s−1)最大加速度谱/
( m·s−2)150 76.3459 133.0172 98974 200 52.8682 143.1708 108695 -
[1] 刘建湖. 舰船非接触水下爆炸动力学的理论与应用[D]. 无锡: 中国船舶科学研究中心,2002. [2] SHEKHAR N C, HATWAL H, MALLIK A K. Response of non-linear dissipative shock isolators[J]. Journal of Sound and Vibration, 1998, 214(4): 589-603. doi: 10.1006/jsvi.1997.1468 [3] GEERS T L, HUNTER K S. An integrated wave-effects model for an underwater explosion bubble[J]. The Journal of the Acoustical Society of America, 2002, 111(4): 1584-1601. doi: 10.1121/1.1458590 [4] 刘建湖,周心桃,潘建强,等. 舰艇抗爆抗冲击技术现状和发展途径[J]. 中国舰船研究,2016, 11(01): 46-56. doi: 10.3969/j.issn.1673-3185.2016.01.007 [5] WEBSTER K C. Investigation of close proximity underwater explosion effects on a ship-like structure using the multi-material arbitrary Lagrangian Eulerian finite element method[D]. U.S.: Virginia Polytechnic Institute and State University, 2007. [6] 陈建平. 水下爆炸气泡脉动压力下舰船及其设备抗冲击性能研究[J]. 舰船科学技术,2001(06): 17-25. [7] 姚熊亮,张阿漫,许维军. 声固耦合方法在舰船水下爆炸中的应用[J]. 哈尔滨工程大学学报,2005, 26(6): 707-712. doi: 10.3969/j.issn.1006-7043.2005.06.003 [8] 陈辉,李玉节,潘建强,等. 水下爆炸条件下不同装药对水面舰船冲击环境的影响试验研究[J]. 振动与冲击,2011, 30(7): 16-20. doi: 10.3969/j.issn.1000-3835.2011.07.004 [9] 焦安龙,贾则,陈高杰. 基于ABAQUS的近距水下爆炸对舰艇的冲击响应研究[J]. 电子设计工程,2015, 23(10): 179-181. doi: 10.3969/j.issn.1674-6236.2015.10.053 [10] GAN N, LIU L T, YAO X L, et al. Experimental and numerical investigation on the dynamic response of a simplified open floating slender structure subjected to underwater explosion bubble[J]. Ocean Engineering, 2021, 219(7): 108-113. [11] 孙丰,王军,姬秀滨,等. 远场水下爆炸流场建模方法[J]. 船舶,2013, 24(5): 21-26. doi: 10.3969/j.issn.1001-9855.2013.05.005 [12] 宗智,陈岗,叶帆,等. 水下爆炸冲击波作用下的空化效应数值仿真研究[J]. 船舶力学,2014, 18(04): 385-394. doi: 10.3969/j.issn.1007-7294.2014.04.005 [13] 李营,汪玉,吴卫国,等. 船用907A钢的动态力学性能和本构关系[J]. 哈尔滨工程大学学报,2015, 36(01): 127-129. [14] 姚熊亮,汪玉,张阿漫编著. 水下爆炸气泡动力学[M]. 哈尔滨: 哈尔滨工程大学出版社. 2012,45-48. [15] 张振华,朱锡,徐顺棋. 受压带肋圆柱壳体固有振动频率和稳定性计算[J]. 海军工程大学学报,2000(3): 35-41. doi: 10.3969/j.issn.1009-3486.2000.03.009