Research on the Conversion Method of Critical Calculation Model for Fuel Storage Rack
-
摘要: 为提高RMC在乏燃料贮存格架临界计算的建模效率和建模准确性、推动自主化蒙卡程序在乏燃料贮存格架临界分析的应用,本文开发了蒙卡程序MONK与RMC的计算输入文件转换程序。针对MONK程序的几何、洞、材料、控制、源等描述卡,基于Python语言开发对应读取程序、程序可读入MONK三维蒙卡程序的卡片式计算输入文件,并生成RMC三维蒙卡程序的输入文件。经过对比,生成的RMC输入文件模型与MONK输入文件模型几何一致、材料一致、源项一致、计算控制条件一致,分别计算转换前与转换后的有效增殖因子(keff),keff在误差允许范围内相同。结果表明,该程序满足乏燃料贮存格架临界计算程序输入卡转换的要求,可以提高乏燃料贮存格架建模效率与准确性,同时验证了RMC应用到乏燃料贮存格架临界计算中的正确性。
-
关键词:
- 乏燃料贮存格架临界计算 /
- 转换程序 /
- MONK /
- RMC
Abstract: To improve the modeling efficiency and accuracy of RMC (Reactor MonteCarlo Code) in critical calculations for spent fuel storage racks, and to promote the application of autonomous Monte Carlo code in critical analysis of spent fuel storage racks, a conversion code for the input files of the Monte Carlo code MONK and RMC has been developed. For the description cards of geometry, hole, material, control and source of MONK code, the corresponding reading code was developed based on python language. The code could read the card calculation input file of MONK 3D Monte Carlo code and generate the input file of RMC 3D Monte Carlo code. After comparison, the generated RMC input file model is consistent with MONK input file model in terms of geometry, material, source terms and computational control conditions. The effective multiplication factors before and after conversion are calculated respectively, and the effective multiplication factors are the same within the allowable error range. The results show that the code meets the requirements for the conversion of critical calculation code input cards for spent fuel storage racks, which can improve the efficiency and accuracy of modeling spent fuel storage racks, and also verifies the correctness of applying RMC to critical calculations for spent fuel storage racks.-
Key words:
- Criticality calculation for spent fuel storage rack /
- Conversion code /
- MONK /
- RMC
-
表 1 MONK与RMC宏体定义方式区别表
Table 1. Difference between MONK and RMC Macro Definition Methods
宏体类型 MONK定义方法 RMC定义方法 球体 SPHERE X0 Y0 Z0 R SPH X0 Y0 Z0 R 长方体 BOX Xa Ya Za Xl Yl Zl RPP Xmin Xmax Ymin Ymax Zmin Zmax 圆柱体 (X/Y/Z)ROD Vx Vy Vz R H RCC Vx Vy Vz hx hy hz R 圆台 (X/Y/Z)CONE Vx Vy Vz RB RT H TRC Vx Vy Vz hx hy hz RB RT 圆环体 (X/Y/Z)TORUS Vx Vy Vz RH RR TORUS u v w Vx Vy Vz RH RR 旋转椭球 (X/Y/Z)REL Vx Vy Vz r H ELL Vx Vy Vz ax ay az r 圆柱扇体 (X/Y/Z)SEC Vx Vy Vz R1 R2 H T1 T2 SEC Vx Vy Vz hx hy hz R1 R2 T1 T2 六棱柱 (X/Y/Z)HEX Vx Vy Vz D H RHP Vx Vy Vz hx hy hz s1 s2 s3 三棱柱 (X/Y/Z)TRI Xa Ya Za L1 L2 H TH1 TH2 WED Xa Ya Za Ax Ay Az Bx By Bz hx hy hz 注:(X/Y/Z)代表任意轴向;X0 Y0 Z0为宏体中心坐标;R为半径;Xa Ya Za为底面某一顶点坐标;Xl 、Yl 、Zl分别为X、Y、Z方向长度;Xmin、Xmax、Ymin、Ymax、Zmin、Zmax分别为垂直于对应轴的最小最大边界面;Vx Vy Vz 为底面中心坐标;H为轴向高度;hx hy hz为高度向量;RB、RT分别为底面、顶面半径;RH、RR分别为圆环半径、切面圆半径;u v w为圆环方向向量;r为垂直于旋转轴的半轴长度;ax ay az 为椭球体长半轴向量;R1、R2分别为内径、外径;T1、T2分别为坐标轴与圆柱扇体2个侧面的夹角;D为六棱柱中心到第一个面的距离;s1 s2 s3为六棱柱中心到第一个面的向量;L1、L2分别为三棱柱底面顶点到第一、第二条边的距离;TH1 、TH2分别为三棱柱底面第一、第二条边相对于轴的角度;Ax Ay Az、Bx By Bz分别为三棱柱底面顶点到第一、第二条边的向量 表 2 乏燃料贮存格架一区转换前后的keff
Table 2. keff before and after the Conversion of the Spent Fuel Storage R ack in Zone 1
坠落
距离/cmMONK keff MONK
标准差RMC keff RMC
标准差∆keff 3σ 0 0.64060 0.000300 0.64137 0.000202 0.00077 0.00109 1 0.64060 0.000300 0.64110 0.000195 0.00050 0.00107 2 0.64000 0.000300 0.64090 0.000215 0.00090 0.00111 3 0.63990 0.000300 0.63964 0.000212 −0.00026 0.00110 5 0.63890 0.000300 0.63936 0.000204 0.00046 0.00109 7 0.63870 0.000300 0.63877 0.000206 0.00007 0.00109 10 0.63780 0.000300 0.63861 0.000214 0.00081 0.00111 15 0.63790 0.000300 0.63755 0.000214 −0.00035 0.00111 20 0.63730 0.000300 0.63784 0.000219 0.00054 0.00111 30 0.63730 0.000300 0.63790 0.000199 0.00060 0.00108 表 3 乏燃料贮存格架二区转换前后的keff
Table 3. keff before and after the Conversion of the Spent Fuel Storage Rack in Zone 2
水密度/(g·cm−3) MONK keff MONK 标准差 RMC keff RMC 标准差 ∆keff 3σ 1.0 0.76440 0.000300 0.76439 0.000259 −0.00001 0.00119 0.9 0.75130 0.000300 0.75157 0.000252 0.00027 0.00118 0.8 0.73600 0.000300 0.73710 0.000267 0.00110 0.00120 0.7 0.71840 0.000300 0.71900 0.000249 0.00060 0.00117 0.6 0.69780 0.000300 0.69750 0.000301 −0.00030 0.00127 0.5 0.67060 0.000300 0.67031 0.000263 −0.00029 0.00120 0.4 0.63430 0.000300 0.63536 0.000252 0.00106 0.00118 0.3 0.58620 0.000300 0.58572 0.000256 −0.00048 0.00118 0.2 0.51590 0.000300 0.51529 0.000227 −0.00061 0.00113 0.1 0.41830 0.000300 0.41832 0.000185 0.00002 0.00106 -
[1] 徐鹏. 燃料贮存格架的临界安全分析研究[J]. 核科学与工程,2010, 30(S1): 187-195. [2] 石红. 乏核燃料贮存格架地震及组件跌落事故安全分析[D]. 北京: 北京化工大学,2012. [3] 韩向臻,攸国顺,潘昕怿,等. 基于SCALE的压水堆乏燃料贮存水池临界安全分析[J]. 核电子学与探测技术,2016, 36(4): 408-411. doi: 10.3969/j.issn.0258-0934.2016.04.014 [4] LONG D, RICHARDS S, SMITH P N, et al. MONK10: A Monte Carlo code for criticality analysis[C]//Proceedings of 2015 International Conference on Nuclear Criticality Safety. Charlotte: ICNC, 2015: 13. [5] 梁志. MONK-8B程序的开发研究[C]//全面建设小康社会: 中国科技工作者的历史责任——中国科协2003年学术年会论文集(上). 沈阳: 中国测绘学会,2003: 1. [6] TALAMO A, GOHAR Y, ALIBERTI G, et al. MCNPX, MONK, and ERANOS analyses of the YALINA Booster subcritical assembly[J]. Nuclear Engineering and Design, 2011, 241(5): 1606-1615. doi: 10.1016/j.nucengdes.2011.03.006 [7] 王璠,朱庆福,夏兆东,等. 硝酸浓度对临界安全的影响研究[J]. 原子能科学技术,2024, 58(1): 144-148. doi: 10.7538/yzk.2023.youxian.0161 [8] 李航,周琦,朱庆福. MOX燃料贮存水池核临界安全分析[J]. 原子能科学技术,2018, 52(8): 1388-1392. doi: 10.7538/yzk.2017.youxian.0771 [9] 李航,周琦,朱庆福. 乏燃料溶解器燃料棒随机分布建模方法[J]. 核动力工程,2017, 38(1): 29-31. doi: 10.13832/j.jnpe.2017.01.0029. [10] RICHARDS S D, BAKER C M J, BIRD A J, et al. MONK and MCBEND: current status and recent developments[J]. Annals of Nuclear Energy, 2015, 82: 63-73. doi: 10.1016/j.anucene.2014.07.054 [11] RICHARDS S, DOBSON G, FRY T, et al. Recent developments to the MONK Monte Carlo code for criticality safety and reactor physics analyses[C]//Proceedings of the ICNC 2019-11th International Conference on Nuclear Criticality Safety. Paris: ICNC, 2019. [12] TALAMO A, GOHAR Y, KONDEV F, et al. Modeling of the YALINA booster facility by the Monte Carlo code MONK[C]//Proceedings of the 8th International Topical Meeting on Nuclear Applications and Utilization of Accelerators. Pocatello: Argonne National Lab, 2007. [13] WANG K, LI Z G, SHE D, et al. RMC–a Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048