高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TRISO颗粒SiC层纳米力学行为的分子动力学模拟

严泽凡 田宇 刘马林 刘荣正 刘兵 邵友林 唐亚平

严泽凡, 田宇, 刘马林, 刘荣正, 刘兵, 邵友林, 唐亚平. TRISO颗粒SiC层纳米力学行为的分子动力学模拟[J]. 核动力工程, 2024, 45(S2): 245-253. doi: 10.13832/j.jnpe.2024.S2.0245
引用本文: 严泽凡, 田宇, 刘马林, 刘荣正, 刘兵, 邵友林, 唐亚平. TRISO颗粒SiC层纳米力学行为的分子动力学模拟[J]. 核动力工程, 2024, 45(S2): 245-253. doi: 10.13832/j.jnpe.2024.S2.0245
Yan Zefan, Tian Yu, Liu Malin, Liu Rongzheng, Liu Bing, Shao Youlin, Tang Yaping. Molecular Dynamics Simulation of Nanomechanics Behavior of SiC Layer of TRISO Particle[J]. Nuclear Power Engineering, 2024, 45(S2): 245-253. doi: 10.13832/j.jnpe.2024.S2.0245
Citation: Yan Zefan, Tian Yu, Liu Malin, Liu Rongzheng, Liu Bing, Shao Youlin, Tang Yaping. Molecular Dynamics Simulation of Nanomechanics Behavior of SiC Layer of TRISO Particle[J]. Nuclear Power Engineering, 2024, 45(S2): 245-253. doi: 10.13832/j.jnpe.2024.S2.0245

TRISO颗粒SiC层纳米力学行为的分子动力学模拟

doi: 10.13832/j.jnpe.2024.S2.0245
基金项目: 国家自然科学基金(22478220);国家万人计划青年拔尖人才项目(20224723061)
详细信息
    作者简介:

    严泽凡(1998—),男,硕士研究生,现主要从事先进核能材料的数值模拟研究,E-mail: yzf21@tsinghua.org.cn

    通讯作者:

    刘马林,E-mail: liumalin@tsinghua.edu.cn

  • 中图分类号: TL214+.5

Molecular Dynamics Simulation of Nanomechanics Behavior of SiC Layer of TRISO Particle

  • 摘要: 三元结构各向同性(TRISO)颗粒碳化硅(SiC)层在辐照和高温考验后会发生晶粒的相变、断裂和异常长大等现象,这些SiC层的力学行为对TRISO颗粒的安全性研究非常重要。本文采用分子动力学模拟研究SiC层的纳米力学行为和性能。根据实验现象构建了4种典型SiC层结构:服役前3C-SiC、辐照考验后3C-SiC、高温考验后6H-SiC、高温+辐照考验后6H/3C-SiC,并通过载荷-深度曲线、位错演化、应力应变、原子扩散等参量分析了SiC层的纳米力学行为和性能。结果表明,服役后的SiC层在纳米压痕加载过程中的位错间相互作用更少,使塑性变形减少,所以杨氏模量降低。辐照考验后和高温+辐照考验后的SiC层的应力应变在压头正下方的集中程度降低,且应力应变和原子扩散的横向分布程度提高,所以硬度降低;高温考验后的SiC层的应力应变在压头正下方集中程度提高,且应力应变和原子扩散的纵向分布程度提高,所以硬度提高。研究结果对各种类型的SiC层力学行为和性能给出了定量解释,有助于理解SiC层微观结构、力学行为和力学性能之间的关系。

     

  • 图  1  TRISO颗粒SiC层分子动力学模拟材料模型构建过程

    Figure  1.  Material Model Construction Process of Molecular Dynamics Simulation of the SiC Layer of TRISO Particles

    图  2  纳米压痕过程中的模拟体系设置

    Figure  2.  Simulation System Setup of Nanoindentation Process

    图  3  模型Ⅰ的纳米压痕载荷-深度曲线

    Figure  3.  Nanoindentation Load-depth Curves of Model Ⅰ

    图  4  模型Ⅱ~Ⅴ的载荷-深度曲线与力学性能理论值和模型Ⅱ~Ⅴ的硬度理论/实验值对比

    Figure  4.  Load-depth Curves and Theoretical Value of Mechanical Properties of Model Ⅱ~Ⅴ, and Comparison of Theoretical/Experimental Hardness Values of Model Ⅱ~Ⅴ

    图  5  模型Ⅱ~Ⅴ在加载过程中的位错演化

    Figure  5.  Dislocation Evolution of Model Ⅱ~Ⅴ During Loading Process

    图  6  模型Ⅱ~Ⅴ的应力应变分布与晶粒分布

    Figure  6.  Stress-strain Distribution and Grain Distribution of Models Ⅱ~Ⅴ

    图  7  模型Ⅱ~Ⅴ在加载过程中的均方位移

    Figure  7.  Mean Square Displacement of Model Ⅱ~Ⅴ During Loading Process

    图  8  模型Ⅱ~Ⅴ的原子位移分布

    Figure  8.  Atomic Displacement Distribution of Model Ⅱ~Ⅴ

    表  1  SiC力学性能的理论值和实验值对比

    Table  1.   Comparison of Theoretical and Experimental Values of SiC Mechanical Properties

    力学性能 不同类型SiC的数值
    6H-SiC
    (模型Ⅰ-1)
    4H-SiC
    (模型Ⅰ-2)
    3C-SiC
    (模型Ⅰ-3)
    杨氏模量(实验值)/GPa 374.52~476.43[17] 314.20~556.59[18]
    杨氏模量(MD模拟)/GPa 524.42 498.63 497.64
    下载: 导出CSV
  • [1] LIU R Z, LIU B, ZHANG K H, et al. High temperature oxidation behavior of SiC coating in TRISO coated particles[J]. Journal of Nuclear Materials, 2014, 453(1-3): 107-114. doi: 10.1016/j.jnucmat.2014.06.055
    [2] 刘荣正,刘马林,马景陶. 先进核燃料与材料[M]. 北京: 清华大学出版社,2022: 170-172.
    [3] WU Z H, LIU W D, ZHANG L C, et al. Amorphization and dislocation evolution mechanisms of single crystalline 6H-SiC[J]. Acta Materialia, 2020, 182: 60-67. doi: 10.1016/j.actamat.2019.10.037
    [4] ZHU B, ZHAO D, ZHAO H W. A study of deformation behavior and phase transformation in 4H-SiC during nanoindentation process via molecular dynamics simulation[J]. Ceramics International, 2019, 45(4): 5150-5157. doi: 10.1016/j.ceramint.2018.10.261
    [5] TIAN Z G, XU X P, JIANG F, et al. Study on nanomechanical properties of 4H-SiC and 6H-SiC by molecular dynamics simulations[J]. Ceramics International, 2019, 45(17): 21998-22006. doi: 10.1016/j.ceramint.2019.07.214
    [6] SUN S, PENG X H, XIANG H G, et al. Molecular dynamics simulation in single crystal 3C-SiC under nanoindentation: formation of prismatic loops[J]. Ceramics International, 2017, 43(18): 16313-16318. doi: 10.1016/j.ceramint.2017.09.003
    [7] PAN C L, ZHANG L M, JIANG W L, et al. Grain size dependence of hardness in nanocrystalline silicon carbide[J]. Journal of the European Ceramic Society, 2020, 40(13): 4396-4402. doi: 10.1016/j.jeurceramsoc.2020.05.060
    [8] CHAVOSHI S Z, XU S Z. Twinning effects in the single/nanocrystalline cubic silicon carbide subjected to nanoindentation loading[J]. Materialia, 2018, 3: 304-325. doi: 10.1016/j.mtla.2018.09.003
    [9] THOMPSON A P, AKTULGA H M, BERGER R, et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271: 108171. doi: 10.1016/j.cpc.2021.108171
    [10] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
    [11] WU Z H, LIU W D, ZHANG L C. Effect of structural anisotropy on the dislocation nucleation and evolution in 6H-SiC under nanoindentation[J]. Ceramics International, 2019, 45(11): 14229-14237. doi: 10.1016/j.ceramint.2019.04.131
    [12] VASHISHTA P, KALIA R K, NAKANO A, et al. Interaction potential for silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide[J]. Journal of Applied Physics, 2007, 101(10): 103515. doi: 10.1063/1.2724570
    [13] ERHART P, ALBE K. Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide[J]. Physical Review B, 2005, 71(3): 035211. doi: 10.1103/PhysRevB.71.035211
    [14] TERSOFF J. New empirical approach for the structure and energy of covalent systems[J]. Physical Review B, 1988, 37(12): 6991-7000. doi: 10.1103/PhysRevB.37.6991
    [15] WU Z H, ZHANG L C. Mechanical properties and deformation mechanisms of surface-modified 6H-silicon carbide[J]. Journal of Materials Science & Technology, 2021, 90: 58-65.
    [16] XUE L H, FENG G, LIU S. Molecular dynamics study of temperature effect on deformation behavior of m-plane 4H-SiC film by nanoindentation[J]. Vacuum, 2022, 202: 111192. doi: 10.1016/j.vacuum.2022.111192
    [17] SHIH C J, MEYERS M A, NESTERENKO V F, et al. Damage evolution in dynamic deformation of silicon carbide[J]. Acta Materialia, 2000, 48(9): 2399-2420. doi: 10.1016/S1359-6454(99)00409-7
    [18] GOEL S, STUKOWSKI A, LUO X C, et al. Anisotropy of single-crystal 3C-SiC during nanometric cutting[J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(6): 065004. doi: 10.1088/0965-0393/21/6/065004
    [19] LIAO F, GIRSHICK S L, MOOK W M, et al. Superhard nanocrystalline silicon carbide films[J]. Applied Physics Letters, 2005, 86(17): 171913. doi: 10.1063/1.1920434
    [20] XUE L H, FENG G, WU G, et al. Study of deformation mechanism of structural anisotropy in 4H-SiC film by nanoindentation[J]. Materials Science in Semiconductor Processing, 2022, 146: 106671. doi: 10.1016/j.mssp.2022.106671
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  13
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-22
  • 修回日期:  2024-10-10
  • 刊出日期:  2025-01-06

目录

    /

    返回文章
    返回