Research on Impurity Regulation and Purification Technology of Liquid Lead-based Metal Coolant
-
摘要: 液态铅基金属是国际四代快堆和加速器驱动次临界系统的主流候选工质。然而,液态铅基金属冷却剂在非等温系统长期运行过程中存在杂质持续生成、累积量大、难避免和难处理等问题,容易导致沉积结垢、传热恶化甚至堵流,安全隐患重大。因此,液态铅基金属冷却剂杂质的净化调控是铅冷快堆设计发展中亟待突破的关键技术。本文主要介绍了液态铅基金属冷却剂中杂质的来源、赋存形式以及调控净化技术的研究现状,综述总结了抑制生成法、分离捕集法和还原消除法等前后端杂质调控手段的优势和局限,最后讨论了不同规格、形式下铅冷系统的杂质净化策略的选择与挑战。Abstract: Liquid lead-based metal is the mainstream candidate working fluid for the international fourth generation fast reactors and accelerator-driven subcritical systems. However, the liquid lead-based coolant has problems during the long-term operation in the non-isothermal system, such as continuous generation of impurities, large accumulation, difficulty to avoid and to deal with, which will lead to deposition and scaling, deterioration of heat transfer, and even blockage of the flow, causing significant safety risks. Therefore, the purification and regulation of impurities in lead-based liquid metal coolant is a key technology to be broken through in the design and development of lead-cooled fast reactor. This paper mainly introduces the source and occurrence form of impurities in lead-based coolant, and the research status of purification technology. The advantages and limitations of inhibition generation method, filtration capture method and reduction method are summarized. Finally, the selection and challenges of impurity purification strategies for lead-cooled reactor systems with different specifications and forms are discussed.
-
Key words:
- Liquid lead-based coolant /
- Lead-based fast reactor /
- Impurities /
- Control purification
-
表 1 国内外商用牌号铅锭、铋锭组分 %
Table 1. Components of Lead Ingots and Bismuth Ingots with Commercial Grade at Home and Abroad
元素 牌号 S0 S00 VI1 VI00 Pb99.990 Pb99.994 Bi9999 Bi99997 Pb 99.992 99.9985 1.8 0.01 99.990 99.994 0.001 0.0007 Bi 0.004 0.0005 98 99.98 0.010 0.004 99.99 99.997 Fe 0.001 0.0001 0.001 0.001 0.001 0.0005 0.001 0.0005 Cu 0.0005 0.00001 0.010 0.0001 0.001 0.001 0.001 0.0003 Zn 0.001 0.0001 0.003 0.0005 0.0004 0.0004 0.0005 0.0001 Ag 0.0003 0.00001 0.120 0.00002 0.0015 0.0008 0.004 0.0005 As 0.0005 0.0005 0.0002 0.00007 0.0005 0.0005 0.0003 0.0003 Sn 0.0005 0.0005 0.0005 0.0005 0.0002 Sb 0.0005 0.0001 0.005 0.00002 0.0008 0.0007 0.0005 0.0003 Cd 0.0001 0.0001 0.00005 0.0002 0.0002 0.0001 Ni 0.0002 0.0002 0.0005 Hg 0.0001 0.00005 Mg,Ca,Na 0.002 0.0001 总和 0.010 0.006 0.010 0.003 表 2 液态铅基金属冷却剂杂质净化主要路线及优势和问题
Table 2. Main Impurity Purification Technologies of Liquid Lead-based Coolant and Their Merits and Demerits
路线 名称 优势 问题 分离捕集类 过滤器 技术成熟、结构简单、经济性高 捕集杂质沉积易造成堵塞 冷阱 净化效率高、可控氧 结构复杂、难拆换、压阻大 电磁净化 可净化细微杂质和气泡 净化区域小、大型系统应用难 抑制生成类 气相控氧 技术成熟、升氧快速 配套复杂、延迟高、易过量氧化、降氧速率慢 固相控氧 系统简单、操作便利、可精细控氧以避免生成大尺寸杂质 可靠性待提高 还原消除类 注氢还原 可深度净化、速率较快 机理空缺、成熟度不足 -
[1] ZHANG Y, WANG C L, LAN Z K, et al. Review of thermal-hydraulic issues and studies of lead-based fast reactors[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109625. doi: 10.1016/j.rser.2019.109625 [2] 徐敬尧. 先进核反应堆用铅铋合金性能及纯净化技术研究[D]. 合肥: 中国科学技术大学,2013. [3] OECD/NEA Nuclear Science Committee. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermalhydraulics and technologies[M]. Paris: OECD/NEA Nuclear Science Committee, 2015. [4] BRISSONNEAU L, BEAUCHAMP F, MORIER O, et al. Oxygen control systems and impurity purification in LBE: learning from DEMETRA project[J]. Journal of Nuclear Materials, 2011, 415(3): 348-360. doi: 10.1016/j.jnucmat.2011.04.040 [5] MARTYNOV P N, RACHKOV V I, ASKHADULLIN R S, et al. Analysis of the present status of lead and lead-bismuth coolant technology[J]. Atomic Energy, 2014, 116(4): 285-292. doi: 10.1007/s10512-014-9855-7 [6] MALKOW T, STEINER H, MUSCHER H, et al. Mass transfer of iron impurities in LBE loops under non-isothermal flow conditions[J]. Journal of Nuclear Materials, 2004, 335(2): 199-203. doi: 10.1016/j.jnucmat.2004.07.021 [7] KIKUCHI K, SAITO S, HAMAGUCHI D, et al. Ni-rich precipitates in a lead bismuth eutectic loop[J]. Journal of Nuclear Materials, 2010, 398(1-3): 104-108. doi: 10.1016/j.jnucmat.2009.10.018 [8] GLADINEZ K, ROSSEEL K, LIM J, et al. Experimental investigation on the oxygen cold trapping mechanism in LBE-cooled systems[J]. Nuclear Engineering and Design, 2020, 364: 110664. doi: 10.1016/j.nucengdes.2020.110664 [9] HEMANATH M G, MEIKANDAMURTHY C, KUMAR A A, et al. Theoretical and experimental performance analysis for cold trap design[J]. Nuclear Engineering and Design, 2010, 240(10): 2737-2744. doi: 10.1016/j.nucengdes.2010.06.022 [10] 胡绍洋. 电磁分离液态钢渣中金属液滴的实验研究[D]. 北京: 钢铁研究总院,2018. [11] GLADINEZ K, ROSSEEL K, LIM J, et al. Nucleation and growth of lead oxide particles in liquid lead-bismuth eutectic[J]. Physical Chemistry Chemical Physics, 2017, 19(40): 27593-27602. doi: 10.1039/C7CP05068B [12] SCHROER C, WEDEMEYER O, KONYS J. Gas/liquid oxygen-transfer to flowing lead alloys[J]. Nuclear Engineering and Design, 2011, 241(5): 1310-1318. doi: 10.1016/j.nucengdes.2010.06.047 [13] 常海龙. 控氧液态铅铋合金实验装置研究[D]. 兰州: 中国科学院大学(中国科学院近代物理研究所),2018. [14] 李小波. 液态铅铋系统氧浓度控制技术研究[D]. 北京: 华北电力大学(北京),2022. [15] MARINO A. Numerical modeling of oxygen mass transfer in the MYRRHA system[D]. Belgian: Belgian Nuclear Research Centre, 2015. [16] 赵云淦. 铅铋合金的固态氧控研究[D]. 北京: 华北电力大学(北京),2019. [17] LIM J, MANFREDI G, GAVRILOV S, et al. Control of dissolved oxygen in liquid LBE by electrochemical oxygen pumping[J]. Sensors and Actuators B: Chemical, 2014, 204: 388-392. doi: 10.1016/j.snb.2014.07.117 [18] LIM J, MANFREDI G, ROSSEEL K, et al. Performance of electrochemical oxygen pump in a liquid lead-bismuth eutectic loop[J]. Journal of the Electrochemical Society, 2019, 166(6): E153-E158. doi: 10.1149/2.0711906jes
计量
- 文章访问数: 36
- HTML全文浏览量: 10
- PDF下载量: 14
- 被引次数: 0