Modeling Method and Impact Analysis of Fuel Rod Radial Thermal Expansion of PWR
-
摘要: 在压水堆功率运行过程中,燃料芯块和燃料棒包壳由于温度变化会出现不同程度的热膨胀现象,对堆芯物理计算具有重要影响。为了在两步法计算流程中精确考虑燃料棒径向热膨胀对堆芯物理分析结果的影响,本文基于堆芯物理分析软件Bamboo-C提出了燃料棒径向热膨胀精确建模方法,分别在组件计算和堆芯计算层面对燃料棒径向热膨胀导致的几何变化予以考虑,且在堆芯计算层面通过温度场的迭代收敛最终确定精确的几何膨胀尺寸。本文以EPR1750机组为研究对象,对各燃料循环启动物理试验和功率运行过程进行计算,结果表明,与等温温度系数实测值的误差平均值由−3.065 pcm/K(1pcm=10–5)降低至−1.870 pcm/K,与临界硼浓度实测值的误差平均值由−5.9ppm(1ppm=10–6)、−5.7ppm降低至−2.5ppm、−2.7ppm。因此,本文提出的压水堆燃料棒径向热膨胀建模方法能够在一定程度上提高EPR1750机组关键安全参数的计算精度,具有一定的工程应用价值。
-
关键词:
- 燃料棒径向热膨胀 /
- 温度系数 /
- 临界硼浓度 /
- Bamboo-C软件
Abstract: During the power operation of PWR, fuel pellets and cladding undergo varying degrees of thermal expansion due to temperature changes, which significantly impacts the core physics calculations. In order to accurately consider the influence of fuel rod radial thermal expansion on the core physics analysis results in the "two-step" scheme, this paper proposes a precise modeling method for fuel rod radial thermal expansion based on the reactor-physics analysis software Bamboo-C. This method considers the geometric changes caused by fuel rod radial thermal expansion at both the assembly calculation and reactor core calculation levels, and determines the precise geometric expansion size through iterative convergence of the temperature field at the core calculation level. In this paper, the EPR1750 unit is taken as the research object, and the startup physical tests and power operation processes of each fuel cycle are calculated. The results show that: the average error between the calculated and measured isothermal temperature coefficients decreased from −3.065 pcm/K (1pcm=10–5) to −1.870 pcm/K, and the average error between the calculated and measured critical boron concentrations decreased from −5.9ppm (1ppm=10–6) and −5.7ppm to −2.5ppm and −2.7ppm. Therefore, the PWR fuel rod thermal expansion modeling method proposed in this paper can improve the calculation accuracy of key safety parameters of EPR1750 to a certain extent and has certain engineering application value. -
表 1 燃料组件keff的计算误差
Table 1. Calculation Error of keff of Fuel Assembly
分支计算工况 燃料棒自动热膨胀
建模keff输入卡片手动
热膨胀建模keff验证误差/
pcmBC0-TM561.75 1.116729 1.116738 −0.9 BC0-TM585.25 1.106214 1.106215 −0.1 BC0-TM617.9 1.080652 1.080639 1.3 BC600-TM561.75 1.029785 1.029794 −0.9 BC600-TM617.9 1.014863 1.014851 1.2 BC1200-TM561.75 0.956858 0.956866 −0.8 BC1200-TM585.25 0.958293 0.958293 0 BC1200-TM617.9 0.957729 0.957717 1.2 BC2400-TM561.75 0.841334 0.841341 −0.7 BC2400-TM585.25 0.849296 0.849296 0 BC2400-TM617.9 0.863355 0.863345 1.0 TF561.75-TM561.75 1.040133 1.040142 −0.9 TF561.75-TM585.25 1.036904 1.036909 −0.5 TF561.75-TM617.9 1.026454 1.026458 −0.4 TF1500-TM561.75 1.003678 1.003684 −0.6 TF1500-TM585.25 0.999208 0.999208 0 TF1500-TM617.9 0.985902 0.985893 0.9 表 2 EPR1750机组多个循环ITC计算误差对比
Table 2. Comparison of ITC Calculation Errors for Multiple Cycles of EPR1750 Unit
机组循环 试验条件 原始模型
计算误差/
(pcm·K−1)热膨胀模型
计算误差/
(pcm·K−1)U1C01 ARO −3.278 −2.584 P1全插 −3.049 −2.343 P1,P2全插 −2.853 −2.178 P1,P2,P3全插 −2.961 −2.259 P1,P2,P3,P4全插 −3.794 −3.091 U1C02 ARO −3.845 −2.583 U1C02b ARO −0.801 0.996 U1C03 ARO −2.824 −1.614 U2C01 ARO −3.479 −2.125 P1全插 −2.349 −0.998 P1,P2全插 −3.373 −1.942 P1,P2,P3全插 −3.511 −2.092 P1,P2,P3,P4全插 −2.994 −1.516 U2C02 ARO −3.598 −2.339 U2C03 ARO −3.259 −1.387 ARO—控制棒全提条件;P1~P4—EPR1750机组的控制棒组代号 -
[1] RICAUD J M, SEILER N, GUILLARD G. Multi-pin ballooning during LOCA transient: a three-dimensional analysis[J]. Nuclear Engineering and Design, 2013, 256: 45-55. doi: 10.1016/j.nucengdes.2012.11.013 [2] ABDELHAMEED A A E, KIM Y. Three-dimensional simulation of passive frequency regulations in the soluble-boron-free SMR ATOM[J]. Nuclear Engineering and Design, 2020, 361: 110505. doi: 10.1016/j.nucengdes.2019.110505 [3] LUCUTA P G, MATZKE H, HASTINGS I J. A pragmatic approach to modelling thermal conductivity of irradiated UO2 fuel: review and recommendations[J]. Journal of Nuclear Materials, 1996, 232(2-3): 166-180. doi: 10.1016/S0022-3115(96)00404-7 [4] 万承辉,李云召,郑友琦,等. 压水堆燃料管理软件Bamboo-C研发及工业确认[J]. 核动力工程,2021, 42(5): 15-22. [5] WILLIAMSON R L, HALES J D, NOVASCONE S R, et al. Multidimensional multiphysics simulation of nuclear fuel behavior[J]. Journal of Nuclear Materials, 2012, 423(1-3): 149-163. doi: 10.1016/j.jnucmat.2012.01.012 [6] HIGASHI Y, MURAKAMI N, YODO T, et al. Development of fuel behavior analysis code for mechanical fuel cladding failure during reactivity insertion event in PWR[J]. Mechanical Engineering Journal, 2021, 8(4): 20-00541.