高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于钒SPND瞬发电流的最佳指示功率估计方法

邵睿智 曹良志 李云召 陈磊

邵睿智, 曹良志, 李云召, 陈磊. 基于钒SPND瞬发电流的最佳指示功率估计方法[J]. 核动力工程, 2025, 46(1): 41-46. doi: 10.13832/j.jnpe.2025.01.0041
引用本文: 邵睿智, 曹良志, 李云召, 陈磊. 基于钒SPND瞬发电流的最佳指示功率估计方法[J]. 核动力工程, 2025, 46(1): 41-46. doi: 10.13832/j.jnpe.2025.01.0041
Shao Ruizhi, Cao Liangzhi, Li Yunzhao, Chen Lei. Best Estimate Power Method Based on Vanadium SPND Prompt Response Currents[J]. Nuclear Power Engineering, 2025, 46(1): 41-46. doi: 10.13832/j.jnpe.2025.01.0041
Citation: Shao Ruizhi, Cao Liangzhi, Li Yunzhao, Chen Lei. Best Estimate Power Method Based on Vanadium SPND Prompt Response Currents[J]. Nuclear Power Engineering, 2025, 46(1): 41-46. doi: 10.13832/j.jnpe.2025.01.0041

基于钒SPND瞬发电流的最佳指示功率估计方法

doi: 10.13832/j.jnpe.2025.01.0041
基金项目: 国家重点研发计划青年科学家项目(2022YFB1902200)
详细信息
    作者简介:

    邵睿智(1998—),男,博士,现主要从事自给能探测器响应电流模拟方面的研究,E-mail: ruizhishao0413@gmail.com

    通讯作者:

    李云召,E-mail: yunzhao@mail.xjtu.edu.cn

  • 中图分类号: TL329

Best Estimate Power Method Based on Vanadium SPND Prompt Response Currents

  • 摘要: 三代压水堆堆芯运行中根据自给能中子探测器(SPND)响应电流快速获得总功率,称之为最佳指示功率估计。现有技术基于钒SPND的总电流与总功率间的线性关系假设(称之为总电流估计法),因无法区分不同电流组分的时间响应,而无法适用于瞬态运行过程。为了提升对运行过程的监测能力,基于压水堆堆芯分析软件NECP-Bamboo中的SPND响应电流计算功能,提出了基于钒SPND瞬发电流的最佳指示功率估计方法(称之为瞬发电流估计法),同时用于瞬态和稳态运行过程,并与已有方法进行了定量对比分析。数值结果表明:①在稳态运行过程中,总电流估计法和瞬发电流估计法给出的最佳指示功率偏差均小于1%额定功率;②在堆芯快速降功率(RPR)棒组落棒的瞬态过程中,总电流估计法的偏差大于50%,而瞬发电流估计法的偏差小于1%。

     

  • 图  1  钒SPND响应电流产生途径

    Figure  1.  The Mechanism of Vanadium SPND Response Current Generation

    图  2  SPND响应电流计算流程

    Figure  2.  Calculation Flow for SPND Current

    图  3  稳态堆芯最佳指示功率线性关系对比

    Figure  3.  Comparison of Best Power Estimate Linear Equation for Steady-state Core

    图  4  两种最佳指示功率估计方法的估计偏差

    Figure  4.  Deviation of Two Different Power Estimate Methods

    图  5  RPR棒组选择[18]

    AP1000堆芯共有69组控制棒组,包含6组M棒组(M1、M2、MA、MB、MC、MD)、4组停堆棒组(S1~S4)和1组AO棒

    Figure  5.  Selected RPR Banks

    图  6  RPR落棒瞬态过程中相对功率变化

    Figure  6.  Relative Power Variation during RPR Rod Insertion Transient Process

    图  7  RPR落棒瞬态过程中响应电流变化

    Figure  7.  Response Current Variation during RPR Rod Insertion Transient Process

    图  8  基于总响应电流的最佳指示功率估计值及偏差

    Figure  8.  Error of the Best Estimate Power Based on Total Response Current

    图  9  基于瞬发电流的最佳指示功率估计值及偏差

    Figure  9.  Error of the Best Estimate Power Based on the Prompt Response Current

  • [1] WARREN H D. Calculational model for self-powered neutron detector[J]. Nuclear Science and Engineering, 1972, 48(3): 331-342. doi: 10.13182/NSE72-A22491
    [2] 刘文臻,李树成,胡铸萱,等. 自给能探测器介绍及其β粒子逃脱率计算方法研究[J]. 核电子学与探测技术,2015, 35(1): 5-7.
    [3] 黄有骏,李文平,杨戴博,等. 华龙一号堆芯中子注量率测量系统自给能中子探测器关键参数研究[J]. 核动力工程,2020, 41(S2): 45-49.
    [4] KURCHENKOV A Y, KOVEL’ A I, KHVATOV V A, et al. Allowance for the burnup of a rhodium self-powered neutron detector in a VVER-1000 reactor[J]. Physics of Atomic Nuclei, 2013, 76(13): 1586-1594. doi: 10.1134/S1063778813130073
    [5] BOYD W A, MILLER R W. The BEACON on-line core monitoring system: functional upgrades and applications[R/OL]. France: OECD-NEA, 1996. http://www.oecd-nea.org/science/rsd/ic96/2-6.pdf.
    [6] SHEN W, SCHWANKE P. Evolution of RFSP 3.5 for CANDU analysis[C]//The 33rd Canadian Nuclear Society (CNS) Annual Conference. Saskatoon: CNS, 2012.
    [7] LEE K, KIM C H. The least-squares method for three-dimensional core power distribution monitoring in pressurized water reactors[J]. Nuclear Science and Engineering, 2003, 143(3): 268-280. doi: 10.13182/NSE03-A2335
    [8] LI W H, LU H L, LI J, et al. Development of a new flux map processing code for moveable detector system in PWR[C]//Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering. Sun Valley: American Nuclear Society, 2013: 754-761.
    [9] LI Y Z, ZHANG B, HE Q M, et al. Development and verification of PWR-core fuel management calculation code system NECP-Bamboo: Part I Bamboo-Lattice[J]. Nuclear Engineering and Design, 2018, 335: 432-440. doi: 10.1016/j.nucengdes.2018.05.030
    [10] YANG W, WU H C, LI Y Z, et al. Development and verification of PWR-core fuel management calculation code system NECP-bamboo: Part II bamboo-core[J]. Nuclear Engineering and Design, 2018, 337: 279-290. doi: 10.1016/j.nucengdes.2018.07.017
    [11] LI Y Z, HE T, LIANG B N, et al. Development and verification of PWR-core nuclear design code system NECP-Bamboo: Part III: bamboo-transient[J]. Nuclear Engineering and Design, 2020, 359: 110462. doi: 10.1016/j.nucengdes.2019.110462
    [12] ZHOU Y C, LI Y Z, SHAO R Z, et al. Automatic modeling of PWR-core in the two-step reactor-core physics analysis code NECP-Bamboo[J]. Nuclear Engineering and Design, 2023, 414: 112546. doi: 10.1016/j.nucengdes.2023.112546
    [13] 杨森涵,李云召,邵睿智,等. 基于NECP-Bamboo程序的商用压水堆乏燃料组件核素成分分析[J]. 原子能科学技术,2023, 57(3): 545-554. doi: 10.7538/yzk.2022.youxian.0333
    [14] YANG J W, WU H C, GUO L, et al. Validation of NECP-Bamboo with BEAVRS and AP1000 measurements[J]. Nuclear Engineering and Design, 2021, 376: 111110. doi: 10.1016/j.nucengdes.2021.111110
    [15] SHAO R Z, CAO L Z, LI Y Z, et al. Simulation and analysis of the space charge effect in a self-powered neutron detector[J]. IEEE Transactions on Nuclear Science, 2023, 70(8): 2097-2105. doi: 10.1109/TNS.2023.3294693
    [16] SHAO R Z, CAO L Z, LI Y Z, et al. Numerical simulation of delayed-SPND response current in NECP-Bamboo[J]. Annals of Nuclear Energy, 2022, 179: 109438. doi: 10.1016/j.anucene.2022.109438
    [17] 邵睿智. 自给能中子探测器响应电流高精度计算方法及其在先进压水堆中的应用研究[D]. 西安: 西安交通大学,2023.
    [18] 李雪松,杜超. AP1000核电厂甩负荷工况下快速降功率系统棒组选择研究[J]. 核动力工程,2019, 40(S2): 177-180.
  • 加载中
图(9)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  7
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-02
  • 修回日期:  2024-05-17
  • 刊出日期:  2025-02-15

目录

    /

    返回文章
    返回