Analysis and Verification of LOCUST Based on SGTR Accident of DOEL-2
-
摘要: 蒸汽发生器传热管破裂(SGTR)事故会导致一、二回路热工水力参数大幅波动,严重危害反应堆的安全性,使用国内研发的热工水力系统分析软件LOCUST可以计算SGTR事故中的热工水力参数并预测事故进程。本研究以DOEL-2电厂SGTR事故为研究对象,以热工水力系统分析软件LOCUST为计算工具,对DOEL-2电厂进行建模计算,并将计算结果与RELAP5计算结果及实际数据进行对比,评估LOCUST软件对SGTR事故预测的准确性。研究表明,LOCUST软件能够很好地预测SGTR事故过程,计算得到的一回路及二回路相关参数与RELAP5计算结果和实际数据吻合较好,本研究可为LOCUST软件验证提供数据支撑。
-
关键词:
- DOEL-2电厂 /
- 蒸汽发生器传热管破裂(SGTR) /
- LOCUST /
- 数据验证
Abstract: The steam generator tube rupture (SGTR) accident will cause significant fluctuations in the thermal and hydraulic parameters of the primary and secondary circuits, seriously endangering reactor safety. The thermal and hydraulic system analysis software LOCUST developed in China can be used to calculate the thermal and hydraulic parameters in the SGTR accident and predict the accident process. This study takes the SGTR accident of DOEL-2 power plant as the research object, and uses the LOCUST as the calculation tool to model and calculate the DOEL-2 power plant. The calculation results are compared with the RELAP5 calculation results and actual data to evaluate the accuracy of LOCUST software in predicting SGTR accidents. It shows that the LOCUST can effectively predict the SGTR accident process, and the calculated parameters of the primary and secondary circuits are in good agreement with the RELAP5 calculation results and actual data. This study can provide data support for the verification of LOCUST. -
表 1 压力容器主要参数
Table 1. Main Parameters of Pressure Vessel
参数名 参数值 下降段长度/mm 4084 下降段环腔宽度/mm 600 下降段流动面积/m2 1.41 下封头体积/m3 2.679 下腔室体积/m3 8.933 上封头体积/m3 8.832 上腔室体积/m3 2.04 表 2 SG主要参数
Table 2. Main Parameters of Steam Generator
参数名 参数值 U型管数量/根 3260 U型管平均长度/m 18.16 U型管外径/mm 22.2 U型管内径/mm 19.6 U型管壁面厚度/mm 2.6 换热面积/m2 4130 U型管流通面积/m2 0.99 进口腔室体积/m3 4.393 出口腔室体积/m3 4.393 表 3 DOEL-2水力学部件类型
Table 3. Types of Hydraulic Components for DOEL-2
部件类型 符号 环管部件 ANNULUS 分支部件 BRANCH 圆管部件 PIPE 泵部件 PUMP 单一控制体 SNGLVOL 单一连接件 SNGLJUN 时间相关控制体 TMDPVOL 时间相关连接件 TMDPJUN 阀门 VALVE 表 4 SGTR初始条件
Table 4. Initial Conditions for SGTR
参数名 参数值 反应堆热功率/MW 1192 一回路运行压力/MPa 15.51 单环路冷却剂流量/(kg·s−1) 3628 压力容器进口温度/℃ 287.3 压力容器出口温度/℃ 317.1 (堆芯冷却剂旁流流量/堆芯总流量)/% 4.5 压力容器进出口压差/MPa 0.216 稳压器压力/MPa 15.5 (稳压器液位/稳压器满液位)/% 25.01 稳压器内蒸汽温度/K 617.9 一回路热管段压力/MPa 15.5 一回路热管段温度/K 528 二回路运行压力/MPa 5.88 SG给水流量/(kg·s−1) 333 SG给水温度/℃ 230 SG蒸汽流量/(kg·s−1) 333 SG下降段水位/m 11.662 再循环倍率 6.0 破口流量/(kg·s−1) 15 表 5 SGTR事故时序
Table 5. Chronology of SGTR
时刻/s 事件 0 SGTR事故发生 210.7 稳压器电加热器关闭 900.0 SG-A大气阀打开 1111.7 破口环路主泵停转 1200.0 高压安注系统启动 1428.3 SG-A电动辅助给水泵打开 1479.1 SG-B电动辅助给水泵打开 1992.0 SG-B电动辅助给水泵关闭 2105.7 破口环路主泵重启 2106.0 稳压器喷淋阀打开 2248.0 稳压器电加热器打开 2287.0 稳压器喷淋阀关闭 2700.0 事故结束 -
[1] STUBBE E J. International agreement report: assessment study of RELAP-5 MOD-2 Cycle 36.01 based on the DOEL-2 Steam Generator Tube Rupture incident of June 1979: NUREG/IA-0008[R]. Washington: Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission, 1986. [2] PESETTI A, TARANTINO M, FORGIONE N. Experimental and numerical analysis of Steam Generator Tube Rupture event for MYRRHA reactor in CIRCE facility with SIMMER-IV code[C]//Proceedings of the 26th International Conference on Nuclear Engineering. London: American Society of Mechanical Engineers, 2018: V005T05A028. [3] PESETTI A, TARANTINO M, GAGGINI P, et al. Commissioning of CIRCE facility for SGTR experimental investigation for HLMRS and pre-test analysis by SIMMER-IV code[C]//Proceedings of the 25th International Conference on Nuclear Engineering. Shanghai: American Society of Mechanical Engineers, 2017: V005T05A039. [4] YU Q F, FANG Y L, ZHAO Y F, et al. Experimental investigation of pressure fluctuation and steam transport under SGTR accident in Lead-cooled Fast Reactors[J]. International Journal of Heat and Mass Transfer, 2023, 207: 123988. doi: 10.1016/j.ijheatmasstransfer.2023.123988 [5] 方俊,吴楠,祁婷. RELAP5程序对AP1000核电厂SGTR事故的分析能力研究[J]. 核动力工程,2016, 37(3): 70-74, doi: 10.13832/j.jnpe.2016.03.0070. [6] 贾斌,吴晗,乔雪冬,等. 基于RELAP5的大功率非能动核电厂SGTR事故分析研究[J]. 核科学与工程,2016, 36(5): 683-692. doi: 10.3969/j.issn.0258-0918.2016.05.018 [7] 贾斌,高新力,乔雪冬,等. 基于RELAP5程序的国产先进压水堆核电厂SGTR事故分析研究[C]//第十六届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2019年学术年会论文集. 惠州: 中国核学会核能动力分会反应堆热工流体专业委员会,中核核反应堆热工水力技术重点实验室,核反应堆热工流体青年工作委员会,2019: 7,doi: 10.26914/c.cnkihy.2019.047851. [8] 贾斌,高新力,孟利利,等. 国产先进压水堆核电厂SGTR事故质量释放与满溢分析研究[J]. 核科学与工程,2020, 40(5): 836-843. doi: 10.3969/j.issn.0258-0918.2020.05.016 [9] 胡伟晨,刘建全,赵鹏程,等. 基于RELAP5的蒸汽发生器传热管断裂事故分析[J]. 核科学与工程,2022, 42(2): 398-407. doi: 10.3969/j.issn.0258-0918.2022.02.022 [10] LEE S H, KIM K, KIM H J, et al. Analyses of SGTR accident with mihama unit experience[J]. Nuclear Engineering and Technology, 1994, 26(1): 41-53. [11] SEUL K W, BANG Y S, LEE S, et al. Assessment of RELAP5/MOD3.1 with the LSTF SB-SG-06 experiment simulating a steam generator tube rupture transient: NUREG/IA-0130[R]. Washington: U. S. Nuclear Regulatory Commission, 1996. [12] PARZER I, KONCAR B, PROSEK A. SGTR analyses for Krsko full scope simulator verification[C]//Proceedings of the International Conference Nuclear Energy in Central Europe 2000. Bled, 2000. [13] WON S K, BANG Y S, KIM I G, et al. Simulation of multiple steam generator tube rupture (SGTR) event scenario[J]. Nuclear Engineering and Technology, 2003, 35(3): 179-190. [14] 林萌,苏云,胡锐,等.核电站工程模拟器用于SGTR事故仿真分析研究[J].原子能科学技术, 2005, 39(3):240-240.林萌, 苏云, 胡锐, 等.核电站工程模拟器用于SGTR事故仿真分析研究[J].原子能科学技术, 2005, 39(3):240-240. [15] JIA B, JING J P, QIAO X D, et al. Calculations for AP1000 nuclear power plant SGTR accident based on RELAP5/mod 3.3 program[J]. Journal of Computational Methods in Sciences and Engineering, 2015, 15(1): 81-90. doi: 10.3233/JCM-150522 [16] XING M, LI L S, SHEN F, et al. Preliminary large break LOCA and SGTR accident analysis of the compact small reactor[C]//Proceedings of the 25th International Conference on Nuclear Engineering. Shanghai: American Society of Mechanical Engineers, 2017: V004T06A018. [17] TAKEDA T. ROSA/LSTF test and RELAP5 code analyses on PWR steam generator tube rupture accident with recovery actions[J]. Nuclear Engineering and Technology, 2018, 50(6): 981-988. doi: 10.1016/j.net.2018.05.002 [18] ALKAN C. Evaluation of safety transients in helical coil steam generators with RELAP5-3D code[D]. Hamilton: McMaster University, 2022.