Development and Validation of a Four-Parameter SST k-ω-kθ-εθ Model for LBE Flow and Heat Transfer
-
摘要: 为解决极低普朗特数流体的数值传热计算问题,提高液态铅铋合金(LBE)流动换热数值计算精度,在OpenFOAM框架下,构建了雷诺应力和湍流热通量的SST k-ω-kθ-εθ四参数模型。使用四参数模型在垂直管内和带绕丝格架19棒束LBE流动换热基准实验的基础上,结合相应的努塞尔数与摩擦因子经验关联式,进行了与湍流普朗特数(Prt)模型的对比验证和传热分析。结果表明,SST k-ω-kθ-εθ四参数模型所预测的温度与实验数据吻合较好,对传热的预测性能优于Prt模型,适用于LBE流动换热数值计算。Abstract: In order to solve the problem of numerical heat transfer computation for extremely low-Prandtl-number fluids and to improve the computational accuracy of the numerical simulation of liquid lead-bismuth eutectic (LBE), a four-parameter SST k-ω-kθ-εθ model for the Reynolds stress and turbulent heat flux is developed under the framework of OpenFOAM. Based on benchmark flow and heat transfer experiments of LBE in a vertical pipe and wire-wrapped 19-rod bundle, a comparison and thermal-hydraulic analysis were conducted against the turbulent Prandtl number (Prt) model using relevant empirical Nusselt number and friction factor correlations. The results show that the temperature predicted by the four-parameter SST k-ω-kθ-εθ model agrees well with the experimental data, and the heat transfer prediction performance is better than that of the Prt model. The model is suitable for the numerical computation of LBE flow and heat transfer.
-
Key words:
- Four-parameter model /
- OpenFOAM /
- Lead-bismuth eutectic (LBE) /
- Flow and heat transfer
-
表 1 LBE物性推荐关系式
Table 1. Recommended Relationships of LBE Physical Properties
物性参数 表达式 ρ/(kg·m−3) 11096−1.3236T λ/(W·m−1·K−1) 3.61+1.517×10−2T−1.741×10−6T2 cp/(J·kg−1·K−1) 159−2.72×10−2T+7.12×10−6T2 η/(kg·m−1·s−1) 4.94×10−4exp(754.1/T) 表 2 带绕丝格架19棒束几何参数
Table 2. Dimensions of Wire-wrapped 19-rod Bundle
参数 参数值 绕丝直径d/mm 2.20 棒束直径D/mm 8.20 Dh/mm 5.20 P/mm 10.49 W/mm 10.58 绕丝节距H/mm 328 加热总长Lh/mm 870 -
[1] 魏诗颖,王成龙,田文喜,等. 铅基快堆关键热工水力问题研究综述[J]. 原子能科学技术,2019, 53(2): 326-336. doi: 10.7538/yzk.2018.youxian.0335 [2] KAYS W M. Turbulent prandtl number—where are we?[J]. Journal of Heat Transfer, 1994, 116(2): 284-295. doi: 10.1115/1.2911398 [3] SHAMS A, ROELOFS F, TISELJ I, et al. A collaborative effort towards the accurate prediction of turbulent flow and heat transfer in low-Prandtl number fluids[J]. Nuclear Engineering and Design, 2020, 366: 110750. [4] CHENG X, TAK N I. CFD analysis of thermal–hydraulic behavior of heavy liquid metals in sub-channels[J]. Nuclear Engineering and Design, 2006, 236(18): 1874-1885. doi: 10.1016/j.nucengdes.2006.02.001 [5] SHAMS A, DE SANTIS A, ROELOFS F. An overview of the AHFM-NRG formulations for the accurate prediction of turbulent flow and heat transfer in low-Prandtl number flows[J]. Nuclear Engineering and Design, 2019, 355: 110342. doi: 10.1016/j.nucengdes.2019.110342 [6] MANSERVISI S, MENGHINI F. A CFD four parameter heat transfer turbulence model for engineering applications in heavy liquid metals[J]. International Journal of Heat and Mass Transfer, 2014, 69: 312-326. doi: 10.1016/j.ijheatmasstransfer.2013.10.017 [7] 何少鹏,王明军,章静,等. 基于OpenFOAM的液态金属铅铋三维流动换热特性数值模拟研究[J]. 原子能科学技术,2021, 55(6): 1007-1014. doi: 10.7538/yzk.2020.youxian.0445 [8] 苏兴康,顾龙,彭天骥,等. 基于OpenFOAM的四方程模型研究[J]. 核动力工程,2021, 42(S1): 26-32. [9] 苏兴康,顾龙,李显文,等. 基于k-ε-k θ-ε θ模型的液态金属三角形棒束数值传热研究[J]. 原子能科学技术,2022, 56(12): 2735-2746. doi: 10.7538/yzk.2021.youxian.1018 [10] 邓诗雨,卢涛,邓坚,等. 液态铅铋合金湍流普朗特数及RANS模型优选[J]. 核动力工程,2023, 44(2): 98-103. [11] MENTER F R, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer, 2003, 4: 625-632. [12] NAGANO Y, KIM C. A two-equation model for heat transport in wall turbulent shear flows[J]. Journal of Heat Transfer, 1988, 110(3): 583-589. doi: 10.1115/1.3250532 [13] IBRAGIMOV M K, SUBBOTIN V I, USHAKOV P A. Investigation of heat transfer in the turbulent flow of liquid metals in tubes[J]. The Soviet Journal of Atomic Energy, 1961, 8(1): 48-50. [14] SKUPINSKI E, TORTEL J, VAUTREY L. Determination des coefficients de convection d’un alliage sodium-potassium dans un tube circulaire[J]. International Journal of Heat and Mass Transfer, 1965, 8(6): 937-951. doi: 10.1016/0017-9310(65)90077-3 [15] KIRILLOV P L, USHAKOV P A. Heat transfer to liquid metals: specific features, methods of investigation, and main relationships[J]. Thermal Engineering, 2001, 48(1): 50-59. [16] JOHNSON H A, HARTNETT J P, CLABAUGH W J. Heat transfer to molten lead-bismuth eutectic in turbulent pipe flow[J]. Transactions of the American Society of Mechanical Engineers, 2022, 75: 1191-1198. [17] OECD, NEA. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies - 2015 Edition[M]. Paris: OECD Publishing, 2015:27-131. [18] PACIO J, DAUBNER M, FELLMOSER F, et al. Experimental study of heavy-liquid metal (LBE) flow and heat transfer along a hexagonal 19-rod bundle with wire spacers[J]. Nuclear Engineering and Design, 2016, 301: 111-127. [19] PACIO J, CHEN S K, CHEN Y M, et al. Analysis of pressure losses and flow distribution in wire-wrapped hexagonal rod bundles for licensing. Part II: Evaluation of public experimental data[J]. Nuclear Engineering and Design, 2022, 388: 111606. doi: 10.1016/j.nucengdes.2021.111606