高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向LBE流动换热的SST k-ω-kθ-εθ四参数模型构建与验证

吴杰 苏兴康 蔡杰进 巩子琦 顾龙

吴杰, 苏兴康, 蔡杰进, 巩子琦, 顾龙. 面向LBE流动换热的SST k-ω-kθ-εθ四参数模型构建与验证[J]. 核动力工程, 2025, 46(1): 100-106. doi: 10.13832/j.jnpe.2025.01.0100
引用本文: 吴杰, 苏兴康, 蔡杰进, 巩子琦, 顾龙. 面向LBE流动换热的SST k-ω-kθ-εθ四参数模型构建与验证[J]. 核动力工程, 2025, 46(1): 100-106. doi: 10.13832/j.jnpe.2025.01.0100
Wu Jie, Su Xingkang, Cai Jiejin, Gong Ziqi, Gu Long. Development and Validation of a Four-Parameter SST k-ω-kθ-εθ Model for LBE Flow and Heat Transfer[J]. Nuclear Power Engineering, 2025, 46(1): 100-106. doi: 10.13832/j.jnpe.2025.01.0100
Citation: Wu Jie, Su Xingkang, Cai Jiejin, Gong Ziqi, Gu Long. Development and Validation of a Four-Parameter SST k-ω-kθ-εθ Model for LBE Flow and Heat Transfer[J]. Nuclear Power Engineering, 2025, 46(1): 100-106. doi: 10.13832/j.jnpe.2025.01.0100

面向LBE流动换热的SST k-ω-kθ-εθ四参数模型构建与验证

doi: 10.13832/j.jnpe.2025.01.0100
基金项目: 国家自然科学基金(12275088);广东省重点研发计划(2021B0101250002);国防科技工业核动力技术创新中心专项科研项目(HDLCXZX-2022-008)
详细信息
    作者简介:

    吴 杰(1998—),男,博士研究生,现主要从事反应堆热工水力研究,E-mail: epjwu@mail.scut.edu.cn

    通讯作者:

    蔡杰进,E-mail: epjjcai@scut.edu.cn

  • 中图分类号: TL334

Development and Validation of a Four-Parameter SST k-ω-kθ-εθ Model for LBE Flow and Heat Transfer

  • 摘要: 为解决极低普朗特数流体的数值传热计算问题,提高液态铅铋合金(LBE)流动换热数值计算精度,在OpenFOAM框架下,构建了雷诺应力和湍流热通量的SST k-ω-kθ-εθ四参数模型。使用四参数模型在垂直管内和带绕丝格架19棒束LBE流动换热基准实验的基础上,结合相应的努塞尔数与摩擦因子经验关联式,进行了与湍流普朗特数(Prt)模型的对比验证和传热分析。结果表明,SST k-ω-kθθ四参数模型所预测的温度与实验数据吻合较好,对传热的预测性能优于Prt模型,适用于LBE流动换热数值计算。

     

  • 图  1  四参数模型整体框架

    λ—热导率;η—黏度;p_rgh—动压,在OpenFOAM软件中该表示为p_rgh

    Figure  1.  Overall Framework of the Four-parameter Model

    图  2  数值模型及关联式Nu计算值与实验数据对比

    Figure  2.  Comparison of Nu Values between Numerical Models and Empirical Correlations with Experimental Data

    图  3  数值模型及关联式Nu值与实验值平均绝对误差

    Figure  3.  Mean Absolute Error of Nu Values between Numerical Models and Empirical Correlations with Experimental Data

    图  4  沿管径向Prt分布

    Figure  4.  Prt Profile along Pipe Diameter

    图  5  棒束入口横截面示意图

    P—棒束间距;W—边缘间距

    Figure  5.  Schematic Diagram of Cross-section of Rod Bundle Inlet

    图  6  模拟与实验局部测点温度比对

    Figure  6.  Comparison of Simulated and Experimental Local Measurement Temperatures

    图  7  模拟与实验摩擦因子比对

    Figure  7.  Comparison of Simulated and Experimental Friction Factors

    图  8  棒束截面温度场

    Figure  8.  Temperature Contour of Rod Bundle Cross-section

    图  9  截面z/Lh=15/6处中心1号棒周向壁面温度分布

    Figure  9.  Temperature Profile on Circumferential Wall of Central No.1 Rod at Cross-section z/Lh=15/6

    表  1  LBE物性推荐关系式

    Table  1.   Recommended Relationships of LBE Physical Properties

    物性参数 表达式
    ρ/(kg·m−3) 11096−1.3236T
    λ/(W·m−1·K−1) 3.61+1.517×10−2T−1.741×10−6T2
    cp/(J·kg−1·K−1) 159−2.72×10−2T+7.12×10−6T2
    η/(kg·m−1·s−1) 4.94×10−4exp(754.1/T)
    下载: 导出CSV

    表  2  带绕丝格架19棒束几何参数

    Table  2.   Dimensions of Wire-wrapped 19-rod Bundle

    参数参数值
    绕丝直径d/mm2.20
    棒束直径D/mm8.20
    Dh/mm5.20
    P/mm10.49
    W/mm10.58
    绕丝节距H/mm328
    加热总长Lh/mm870
    下载: 导出CSV
  • [1] 魏诗颖,王成龙,田文喜,等. 铅基快堆关键热工水力问题研究综述[J]. 原子能科学技术,2019, 53(2): 326-336. doi: 10.7538/yzk.2018.youxian.0335
    [2] KAYS W M. Turbulent prandtl number—where are we?[J]. Journal of Heat Transfer, 1994, 116(2): 284-295. doi: 10.1115/1.2911398
    [3] SHAMS A, ROELOFS F, TISELJ I, et al. A collaborative effort towards the accurate prediction of turbulent flow and heat transfer in low-Prandtl number fluids[J]. Nuclear Engineering and Design, 2020, 366: 110750.
    [4] CHENG X, TAK N I. CFD analysis of thermal–hydraulic behavior of heavy liquid metals in sub-channels[J]. Nuclear Engineering and Design, 2006, 236(18): 1874-1885. doi: 10.1016/j.nucengdes.2006.02.001
    [5] SHAMS A, DE SANTIS A, ROELOFS F. An overview of the AHFM-NRG formulations for the accurate prediction of turbulent flow and heat transfer in low-Prandtl number flows[J]. Nuclear Engineering and Design, 2019, 355: 110342. doi: 10.1016/j.nucengdes.2019.110342
    [6] MANSERVISI S, MENGHINI F. A CFD four parameter heat transfer turbulence model for engineering applications in heavy liquid metals[J]. International Journal of Heat and Mass Transfer, 2014, 69: 312-326. doi: 10.1016/j.ijheatmasstransfer.2013.10.017
    [7] 何少鹏,王明军,章静,等. 基于OpenFOAM的液态金属铅铋三维流动换热特性数值模拟研究[J]. 原子能科学技术,2021, 55(6): 1007-1014. doi: 10.7538/yzk.2020.youxian.0445
    [8] 苏兴康,顾龙,彭天骥,等. 基于OpenFOAM的四方程模型研究[J]. 核动力工程,2021, 42(S1): 26-32.
    [9] 苏兴康,顾龙,李显文,等. 基于k-ε-k θ-ε θ模型的液态金属三角形棒束数值传热研究[J]. 原子能科学技术,2022, 56(12): 2735-2746. doi: 10.7538/yzk.2021.youxian.1018
    [10] 邓诗雨,卢涛,邓坚,等. 液态铅铋合金湍流普朗特数及RANS模型优选[J]. 核动力工程,2023, 44(2): 98-103.
    [11] MENTER F R, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer, 2003, 4: 625-632.
    [12] NAGANO Y, KIM C. A two-equation model for heat transport in wall turbulent shear flows[J]. Journal of Heat Transfer, 1988, 110(3): 583-589. doi: 10.1115/1.3250532
    [13] IBRAGIMOV M K, SUBBOTIN V I, USHAKOV P A. Investigation of heat transfer in the turbulent flow of liquid metals in tubes[J]. The Soviet Journal of Atomic Energy, 1961, 8(1): 48-50.
    [14] SKUPINSKI E, TORTEL J, VAUTREY L. Determination des coefficients de convection d’un alliage sodium-potassium dans un tube circulaire[J]. International Journal of Heat and Mass Transfer, 1965, 8(6): 937-951. doi: 10.1016/0017-9310(65)90077-3
    [15] KIRILLOV P L, USHAKOV P A. Heat transfer to liquid metals: specific features, methods of investigation, and main relationships[J]. Thermal Engineering, 2001, 48(1): 50-59.
    [16] JOHNSON H A, HARTNETT J P, CLABAUGH W J. Heat transfer to molten lead-bismuth eutectic in turbulent pipe flow[J]. Transactions of the American Society of Mechanical Engineers, 2022, 75: 1191-1198.
    [17] OECD, NEA. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies - 2015 Edition[M]. Paris: OECD Publishing, 2015:27-131.
    [18] PACIO J, DAUBNER M, FELLMOSER F, et al. Experimental study of heavy-liquid metal (LBE) flow and heat transfer along a hexagonal 19-rod bundle with wire spacers[J]. Nuclear Engineering and Design, 2016, 301: 111-127.
    [19] PACIO J, CHEN S K, CHEN Y M, et al. Analysis of pressure losses and flow distribution in wire-wrapped hexagonal rod bundles for licensing. Part II: Evaluation of public experimental data[J]. Nuclear Engineering and Design, 2022, 388: 111606. doi: 10.1016/j.nucengdes.2021.111606
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-12
  • 修回日期:  2024-05-05
  • 刊出日期:  2025-02-15

目录

    /

    返回文章
    返回