Numerical Simulation and Analysis of Flow and Heat Transfer Characteristics in Annular Helical Cruciform Fuel Elements
-
摘要: 螺旋十字燃料作为一种较为新型的燃料元件,由于其独特的强搅混作用和自支撑等优点而受到广泛关注,但是仍存在中心温度偏高等问题。为解决相关问题,本文提出一种环形螺旋十字燃料,并采用数值模拟的方法研究其内部的流动与换热特性。结果表明,功率计算采用余弦分布的方法会存在轴向功率梯度太大等问题,也会导致计算得到的燃料元件最高温度比实际情况下偏高。此外,相比于螺旋十字燃料,环形螺旋十字燃料具有更强的搅混作用和更低的燃料元件最高温度;并且,入口速度的增加可以进一步加强冷却剂之间的搅混作用从而增强换热能力,但入口温度以及功率密度对搅混作用的影响较小。在燃料元件温度分布方面,环形螺旋十字燃料元件在不同高度处的最高温度位置会受到冷却剂横向速度大小的影响,在冷却剂横向速度大的位置,对燃料元件的换热更强,因此此处的燃料元件温度更低。Abstract: Helical cruciform fuel, as a relatively new type of fuel element, has attracted widespread attention due to its unique advantages such as strong mixing effects and self-supporting. However, helical cruciform fuel still faces issues such as high central temperature. To address these problems, this paper proposes an annular helical cruciform fuel and investigates its internal flow and heat transfer characteristics using numerical simulation methods. The results indicate that using a cosine distribution for power calculation leads to issues such as excessive axial power gradient and overestimation of fuel peak temperature compared to the actual situation. Furthermore, compared to helical cruciform fuel, annular helical cruciform fuel exhibits stronger mixing effects and lower maximum fuel temperature. Additionally, increasing inlet velocity can further enhance the mixing between coolant channels, thereby improving heat transfer capability, but the effects of inlet temperature and power density on mixing are minor. Regarding fuel temperature distribution, the location of maximum temperature at different heights of the annular helical cruciform fuel element is influenced by the magnitude of coolant transverse velocity. Higher transverse velocity results in stronger heat transfer to the fuel element, leading to lower fuel element temperatures in these regions.
-
表 1 环形螺旋十字燃料元件结构参数
Table 1. Structural Parameters of Annular Helical Cruciform Fuel Element
参数 螺旋十字燃料元件 环形螺旋十字燃料元件 轴向长度/m 0.5 0.5 RE/mm 3 1.51(外),3.74(内) r/mm 2.157 3.65(外),1.42(内) L/mm 0.044 0.044 螺距/cm 100 100 表 2 冷却剂和燃料元件热物性参数
Table 2. Thermal Properties of Coolant and Fuel Element
物理量 冷却剂 燃料元件 密度
ρ/(kg∙m−3)ρ=−3694+17.547T−0.01716T2 5212 定压比热容
cp/(J∙kg−1∙K−1)cp=−3.58×106+18905.8T−33.3T2+0.01955T3 871 导热系数
λ/(W∙m−1∙K−1)λ=−1.66482+0.00939T−9.6×10−6T2 60 -
[1] 刘峪洁,丛腾龙,肖瑶,等. 螺旋十字燃料组件热流力耦合特性数值模拟研究[J]. 原子能科学技术,2023, 57(6): 1159-1169. doi: 10.7538/yzk.2022.youxian.0531 [2] HEJZLAR P, KAZIMI M S. Annular fuel for high-power-density pressurized water reactors: Motivation and overview[J]. Nuclear Technology, 2007, 160(1): 2-15. doi: 10.13182/NT160-2-15 [3] DIAKOV A C, DMITRIEV A M, KANG J, et al. Feasibility of converting Russian icebreaker reactors from HEU to LEU fuel[J]. Science & Global Security, 2006, 14(1): 33-48. [4] AGEENKOV V I, VOLKOV V S, SOLONIN M I, et al. Parameters and technology for fabricating PIK reactor fuel elements[J]. Atomic Energy, 2002, 92(6): 468-474. doi: 10.1023/A:1020262131193 [5] 蔡伟华,黄泽全,张文超,等. 5×5花瓣形燃料棒组件内过冷沸腾流动与换热特性数值研究[J]. 核动力工程,2023, 44(6): 71-79. [6] ZHOU X G, ZHANG D L, LI X Y, et al. High-fidelity neutronics and thermal-hydraulics analysis of helical cruciform fuel based on small modular FHR[J]. Progress in Nuclear Energy, 2023, 159: 104633. doi: 10.1016/j.pnucene.2023.104633 [7] 邓阳斌,巫英伟,张伟旭,等. 双面冷却环形燃料元件的几何尺寸优化[J]. 原子能科学技术,2015, 49(7): 1208-1214. doi: 10.7538/yzk.2015.49.07.1208 [8] 周云龙,吴明婷,黄娜,等. 环形燃料元件内冷却剂流动换热特性的数值研究[J]. 原子能科学技术,2023, 57(6): 1170-1181. doi: 10.7538/yzk.2022.youxian.0703 [9] 丛腾龙,高勇,程毅,等. 螺旋十字燃料组件沸腾传热及燃料元件热力耦合特性研究[J]. 核动力工程,2023, 44(5): 216-222. [10] CONG T L, XIAO Y, WANG B C, et al. Numerical study on the boiling heat transfer and critical heat flux in a simplified fuel assembly with 2×2 helical cruciform rods[J]. Progress in Nuclear Energy, 2022, 145: 104111. doi: 10.1016/j.pnucene.2021.104111 [11] 刘畅. 螺旋型燃料棒束内流动与换热特性数值模拟[D]. 哈尔滨: 哈尔滨工业大学,2020:26-39. [12] CONBOY T M, MCKIELL T J, KAZIMI M S. Helical-cruciform fuel rods for high power density LWRs[J]. Transactions- American Nuclear Society, 2011, 105: 1037. [13] CONG T L, ZHANG R, WANG B C, et al. Single-phase flow in helical cruciform fuel assembly with conjugate heat transfer[J]. Progress in Nuclear Energy, 2022, 147: 104199. doi: 10.1016/j.pnucene.2022.104199 [14] CONG T L, ZHANG Q, ZHU J Z, et al. Transverse mixing characteristics of single-phase flow in the helical cruciform fuel assembly[J]. Annals of Nuclear Energy, 2023, 180: 109427. doi: 10.1016/j.anucene.2022.109427 [15] 张之华,钱达志,徐勇,等. 新型U3Si2-Al燃料组件的工程验证试验研究[J]. 原子能科学技术,2012, 46(9): 1112-1117. doi: 10.7538/yzk.2012.46.09.1112 [16] 张琦,赵行斌,顾汉洋,等. 螺旋十字型燃料元件流动与换热特性的数值模拟分析[C]//第十六届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2019年学术年会论文集. 惠州: 中国核学会核能动力分会反应堆热工流体专业委员会,中核核反应堆热工水力技术重点实验室,核反应堆热工流体青年工作委员会,2019: 733-745.