Numerical Study on Convective Heat Transfer at Low Flow and Spacer Effects in Lead-bismuth Eutectic
-
摘要: 铅冷快堆的冷却剂铅铋合金(LBE)的传热特性相较于水等常规介质不同,为此本文对LBE在低流量下的流动传热特性及其格架效应进行了数值研究。通过和已有实验数据对比并结合先前研究确定了合适的湍流普朗特数模型和湍流模型,基于此采用计算流体动力学(CFD)方法进行了LBE低流量对流传热计算,结果表明随着浮升力效应的增强,上升流传热先弱化后强化,下降流则一直表现为强化,此规律同水类似;但由于LBE普朗特数极低的特性,其整体的传热强、弱化程度相较于水大幅降低。在带有格架的管内CFD计算中发现在格架下游出现传热局部强化,该强化程度随浮升力效应增加而降低并逐渐消失,且格架下游死区强度和长度均随浮升力效应增加而呈现先增加后减少的趋势,转折点大致位于传热弱化区上升段和传热强化区的分界点。此外,在传热强化区并未出现传热振荡现象,此规律与水不同。Abstract: The heat transfer characteristics of lead-bismuth eutectic (LBE), the coolant of LFR, are different from conventional fluid such as water. Therefore, the flow and heat transfer characteristics of LBE at low flow rate and its spacer effect are numerically studied in this paper. By comparing with existing experimental data and combining with previous studies, appropriate turbulence Prandtl number model and turbulence model were chosen. Based on this, the LBE low-flow convective heat transfer was calculated by computational fluid dynamics (CFD). The results show that with the enhancement of buoyancy effect, the heat transfer in upflow is firstly weakened and then strengthened, while in downflow, the heat transfer is always being strengthened, which is similar to water; However, due to the extremely low Prandtl number of LBE, its overall heat transfer strengthening and weakening degree are greatly smaller than water. In the CFD calculation of a tube with a spacer, it is found that local heat transfer enhancement occurs downstream of the spacer, and the degree of enhancement decreases and gradually disappears with the increase of the buoyancy effect. The strength and length of the stagnation zone downstream of the spacer increased first and then decreased with the increase of the buoyancy effect, and the turning point was roughly located at the boundary point between the heat transfer weakening zone rising section and the heat transfer strengthening zone. In addition, there is no heat transfer oscillation in the heat transfer enhancement zone, which is different from water.
-
表 1 LBE热物性
Table 1. Thermophysical Properties of LBE
热物性 实验关联式 密度ρ/(kg·m−3) $\rho = 11{\text{113}}{\text{.6}} - 1.3{\text{4}} \cdot T$ 比热容cp/(J·kg−1·K−1) $ c_p^{} = 156.2 - 1.6 \times {10^{ - 2}} \cdot T $ 动力粘度μ/(Pa·s) $ \mu =4.94\times {10}^{-4}\cdot \mathrm{exp}\left(\dfrac{757.1}{T}\right) $ 热导率λ/(W·m−1·K−1) $\lambda = 4.21 + 1.2 \times {10^{ - 2}} \cdot T$ T—流体当地温度 表 2 湍流普朗特数模型
Table 2. Turbulent Prandtl Number Models
湍流普朗特数模型 表达式 Aoki(1963) ${Pr _{\text{t}}}^{ - 1} = 0.014{{Re} ^{0.45}}{Pr ^{0.2}}\left[ {1 - {\text{exp}}\left( { - \dfrac{1}{{0.014{{{Re} }^{0.45}}{{Pr }^{0.2}}}}} \right)} \right]$ Reynolds(1975) $ {{Pr}}_{\text{t}}=(1+100P{\text{e}}^{-0.5})\left(\dfrac{1}{1+120{{Re}}^{-0.5}}-0.15\right) $ Jischa-Rieke(1979) ${Pr _{\text{t}}} = 0.9 + \dfrac{{182.4}}{{ Pr {{{Re} }^{0.888}}}}$ Kays(1994) ${ Pr _{\text{t}}} = 0.85 + \dfrac{{0.7}}{{\dfrac{{{\nu _{\text{t}}}}}{\nu } \cdot Pr }}$ Cheng-Tak(2006) $ {{Pr}}_{\text{t}}=\left\{\begin{array}{c}4.12\begin{array}{ccc}\begin{array}{cc}\begin{array}{cc}{}_{}^{}& \end{array}& \end{array}& & \end{array}\begin{array}{cc}\begin{array}{cc}\begin{array}{l}\\ \end{array}& \end{array}& \end{array}0 < Pe\le 1000\\ \dfrac{0.01Pe}{(0.018P{e}^{0.8}-0.0009P\text{e}-\text{1}\text{.6})^{1.25}}\begin{array}{cc}& 1000 < Pe\le 2000\end{array}\\ \dfrac{0.01Pe}{(0.018P{e}^{0.8}-3.4)^{1.25}}\begin{array}{cc}& \end{array}\begin{array}{cccc}& & & 2000 < Pe\le 6000\end{array}\end{array}\right. $ ν—运动粘度,m2/s;νt—湍流运动粘度,m2/s;Re—雷诺数;Pr—普朗特数;Prt—湍流普朗特数;Pe—贝克莱数,Pe=Pr·Re -
[1] ZHANG J S. Lead–Bismuth Eutectic (LBE): a coolant candidate for Gen. IV advanced nuclear reactor concepts[J]. Advanced Engineering Materials, 2014, 16(4): 349-356. doi: 10.1002/adem.201300296 [2] GUO C, ZHAO P C, DENG J, et al. Safety analysis of small modular natural circulation lead-cooled fast reactor SNCLFR-100 under unprotected transient[J]. Frontiers in Energy Research, 2021, 9: 678939. doi: 10.3389/fenrg.2021.678939 [3] XIAO Y, LI J L, DING G Q, et al. Numerical study of spacer-induced heat transfer impairment in mixed and free convection heat transfer of water upward flow[J]. International Communications in Heat and Mass Transfer, 2022, 137: 106294. doi: 10.1016/j.icheatmasstransfer.2022.106294 [4] JACKSON J D, COTTON M A, AXCELL B P. Studies of mixed convection in vertical tubes[J]. International Journal of Heat and Fluid Flow, 1989, 10(1): 2-15. doi: 10.1016/0142-727X(89)90049-0 [5] 丁冠群,肖瑶,高新力,等. 格架对低流量对流传热影响的数值研究[J]. 核动力工程,2022, 43(6): 8-14. [6] LIU D, GU H Y. Study on heat transfer behavior in rod bundles with spacer grid[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1065-1075. doi: 10.1016/j.ijheatmasstransfer.2017.12.121 [7] LIU D, GU H Y. Mixed convection heat transfer in a 5 × 5 rod bundles[J]. International Journal of Heat and Mass Transfer, 2017, 113: 914-921. doi: 10.1016/j.ijheatmasstransfer.2017.05.113 [8] LI J L, XIAO Y, GU H Y, et al. Development of a correlation for mixed convection heat transfer in rod bundles[J]. Annals of Nuclear Energy, 2021, 155: 108151. doi: 10.1016/j.anucene.2021.108151 [9] LIU Z P, HUANG D S, WANG C L, et al. Flow and heat transfer analysis of lead–bismuth eutectic flowing in a tube under rolling conditions[J]. Nuclear Engineering and Design, 2021, 382: 111373. doi: 10.1016/j.nucengdes.2021.111373 [10] 冀南,杨俊康,赵鹏程,等. 耦合多变量LSTM与优化算法的铅铋反应堆事故参数预测方法研究[J]. 核动力工程,2023, 44(5): 64-70. [11] 苏子威,周涛,刘梦影,等. 液态铅铋合金热物性研究[J]. 核技术,2013, 36(9): 35-39. [12] 曾陈,张蕊,刘茂龙,等. 不同湍流模型对铅-铋凝固模拟的影响研究[J]. 核动力工程,2023, 44(S1): 40-45. [13] 梁瑞仙,杨凌峰,王译锋,等. 液态铅铋合金回路氧输运特性的数值研究[J]. 核动力工程,2022, 43(6): 187-194. [14] FAZIO C. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies[M]. Paris: OECD, 2016: 70-125. [15] CHEN F, HUAI X L, CAI J, et al. Investigation on the applicability of turbulent-Prandtl-number models for liquid lead-bismuth eutectic[J]. Nuclear Engineering and Design, 2013, 257: 128-133. doi: 10.1016/j.nucengdes.2013.01.005 [16] AOKI S. A consideration on the heat transfer in liquid metal[J]. Bulletin of the Tokyo Institute of Technology, 1963, 54: 63-73. [17] REYNOLDS A J. The prediction of turbulent Prandtl and Schmidt numbers[J]. International Journal of Heat and Mass Transfer, 1975, 18(9): 1055-1069. doi: 10.1016/0017-9310(75)90223-9 [18] JISCHA M, RIEKE H B. About the prediction of turbulent Prandtl and Schmidt numbers from modeled transport equations[J]. International Journal of Heat and Mass Transfer, 1979, 22(11): 1547-1555. doi: 10.1016/0017-9310(79)90134-0 [19] KAYS W M. Turbulent Prandtl number-where are we?[J]. Journal of Heat Transfer, 1994, 116(2): 284-295. doi: 10.1115/1.2911398 [20] CHENG X, TAK N I. Investigation on turbulent heat transfer to lead–bismuth eutectic flows in circular tubes for nuclear applications[J]. Nuclear Engineering and Design, 2006, 236(4): 385-393. doi: 10.1016/j.nucengdes.2005.09.006 [21] JOHNSON H A, HARTNETT J P, CLABAUGH W J. Heat transfer to molten lead-bismuth eutectic in turbulent pipe flow[J]. Journal of Fluids Engineering, 1953, 75(6): 1191-1198. [22] 张双雷,李良星,宋立明. 轴流铅铋泵流场分析及优化[J]. 核动力工程,2022, 43(3): 158-164. [23] 王凯琳,李良星,张双雷,等. 轴流铅铋泵的设计及其水力性能分析[J]. 西安交通大学学报,2020, 54(11): 166-174. [24] 曾付林,张小龙,赵鹏程. 铅铋冷却紧密栅内环形燃料棒外周向温度分布不均匀性研究[J]. 核动力工程,2023, 44(6): 95-103. [25] 王俊杰. 铅铋冷却绕丝燃料组件热工水力及流致振动特性分析[D]. 上海: 上海交通大学,2022. [26] 葛志浩. 液态金属湍流换热的直接数值模拟研究[D]. 合肥: 中国科学技术大学,2018. [27] MAROCCO L, DI VALMONTANA A A, WETZEL T. Numerical investigation of turbulent aided mixed convection of liquid metal flow through a concentric annulus[J]. International Journal of Heat and Mass Transfer, 2017, 105: 479-494. doi: 10.1016/j.ijheatmasstransfer.2016.09.107 [28] UMAVATHI J C, KUMAR J P, CHAMKHA A J, et al. Mixed convection in a vertical porous channel[J]. Transport in Porous Media, 2005, 61(3): 315-335. doi: 10.1007/s11242-005-0260-5 [29] 祝家银. 垂直圆管内液态金属湍流混合对流换热的大涡模拟研究[D]. 合肥: 中国科学技术大学,2019. [30] XIAO Y, PAN J S, GU H Y. Numerical investigation of spacer effects on heat transfer of supercritical fluid flow in an annular channel[J]. International Journal of Heat and Mass Transfer, 2018, 121: 343-353. doi: 10.1016/j.ijheatmasstransfer.2018.01.030 [31] DING G Q, LI N, LIU B, et al. Numerical study of mixed and free convection heat transfer under ocean conditions[J]. International Journal of Heat and Mass Transfer, 2023, 203: 123811. doi: 10.1016/j.ijheatmasstransfer.2022.123811