高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铅铋合金低流量对流传热及格架效应数值研究

袁搏 孙杰 肖瑶 丁冠群 顾汉洋

袁搏, 孙杰, 肖瑶, 丁冠群, 顾汉洋. 铅铋合金低流量对流传热及格架效应数值研究[J]. 核动力工程, 2025, 46(1): 128-135. doi: 10.13832/j.jnpe.2025.01.0128
引用本文: 袁搏, 孙杰, 肖瑶, 丁冠群, 顾汉洋. 铅铋合金低流量对流传热及格架效应数值研究[J]. 核动力工程, 2025, 46(1): 128-135. doi: 10.13832/j.jnpe.2025.01.0128
Yuan Bo, Sun Jie, Xiao Yao, Ding Guanqun, Gu Hanyang. Numerical Study on Convective Heat Transfer at Low Flow and Spacer Effects in Lead-bismuth Eutectic[J]. Nuclear Power Engineering, 2025, 46(1): 128-135. doi: 10.13832/j.jnpe.2025.01.0128
Citation: Yuan Bo, Sun Jie, Xiao Yao, Ding Guanqun, Gu Hanyang. Numerical Study on Convective Heat Transfer at Low Flow and Spacer Effects in Lead-bismuth Eutectic[J]. Nuclear Power Engineering, 2025, 46(1): 128-135. doi: 10.13832/j.jnpe.2025.01.0128

铅铋合金低流量对流传热及格架效应数值研究

doi: 10.13832/j.jnpe.2025.01.0128
基金项目: 国家自然科学基金项目(12322510,12075150);上海市青年科技启明星计划(22QA1404500)
详细信息
    作者简介:

    袁 搏(2001—),男,硕士研究生,现主要从事反应堆热工水力方向研究,E-mail: sunsetmaster@sjtu.edu.cn

    通讯作者:

    肖 瑶,E-mail: yxiao@sjtu.edu.cn

  • 中图分类号: TL333

Numerical Study on Convective Heat Transfer at Low Flow and Spacer Effects in Lead-bismuth Eutectic

  • 摘要: 铅冷快堆的冷却剂铅铋合金(LBE)的传热特性相较于水等常规介质不同,为此本文对LBE在低流量下的流动传热特性及其格架效应进行了数值研究。通过和已有实验数据对比并结合先前研究确定了合适的湍流普朗特数模型和湍流模型,基于此采用计算流体动力学(CFD)方法进行了LBE低流量对流传热计算,结果表明随着浮升力效应的增强,上升流传热先弱化后强化,下降流则一直表现为强化,此规律同水类似;但由于LBE普朗特数极低的特性,其整体的传热强、弱化程度相较于水大幅降低。在带有格架的管内CFD计算中发现在格架下游出现传热局部强化,该强化程度随浮升力效应增加而降低并逐渐消失,且格架下游死区强度和长度均随浮升力效应增加而呈现先增加后减少的趋势,转折点大致位于传热弱化区上升段和传热强化区的分界点。此外,在传热强化区并未出现传热振荡现象,此规律与水不同。

     

  • 图  1  带格架圆管示意图

    Figure  1.  Schematic Diagram of the Tube with Spacer

    图  2  格架附近网格局部加密

    Figure  2.  Local Grid Refinement near the Spacer

    图  3  湍流模型和湍流普朗特数模型验证

    Nu—努塞尔数

    Figure  3.  Validation of Turbulence Models and Turbulence Prandtl Number Models

    图  4  LBE后台阶流计算结果与DNS对比

    Ri—理查德森数,Ri=Gr*/Re2Gr—格拉晓夫数

    Figure  4.  Comparison of LBE in Backward-Facing Step Flow Calculation Results with DNS

    图  5  网格敏感性分析

    Figure  5.  Grid Sensitivity Analysis

    图  6  浮升力对LBE传热影响分析

    Figure  6.  Analysis of Effect of Buoyancy on Heat Transfer of LBE

    图  7  上升流动时浮升力效应在水和LBE中表现对比

    Figure  7.  Comparison of Buoyancy Effect between Water and LBE in Upflow

    图  8  浮升力对LBE上升流场影响分析

    纵坐标为当地速度v与主流速度v0比值或湍动能(Tk)与主流速度v0平方的比值;横坐标为无量纲离壁高度,0表示壁面,1.0表示管道轴线

    Figure  8.  Analysis of the Influence of Buoyancy on LBE Upflow

    图  9  LBE与水在湍流传热中分子导热所占比重对比

    Figure  9.  Comparison of the Proportion of Molecular Heat Conduction Between LBE and Water in Turbulent Heat Transfer

    图  10  格架下游LBE传热能力分析

    Figure  10.  Analysis of LBE Heat Transfer Capacity Downstream of Spacer

    图  11  Bo*=1.11×10−5工况LBE与水对比

    Figure  11.  Comparison of LBE and Water in Bo* =1.11×10−5 Case

    图  12  Bo*=1.11×10−5工况速度分布云图

    Figure  12.  Velocity Distribution Nephogram in Bo*=1.11×10−5 Case

    表  1  LBE热物性

    Table  1.   Thermophysical Properties of LBE

    热物性 实验关联式
    密度ρ/(kg·m−3) $\rho = 11{\text{113}}{\text{.6}} - 1.3{\text{4}} \cdot T$
    比热容cp/(J·kg−1·K−1) $ c_p^{} = 156.2 - 1.6 \times {10^{ - 2}} \cdot T $
    动力粘度μ/(Pa·s) $ \mu =4.94\times {10}^{-4}\cdot \mathrm{exp}\left(\dfrac{757.1}{T}\right) $
    热导率λ/(W·m−1·K−1) $\lambda = 4.21 + 1.2 \times {10^{ - 2}} \cdot T$
      T—流体当地温度
    下载: 导出CSV

    表  2  湍流普朗特数模型

    Table  2.   Turbulent Prandtl Number Models

    湍流普朗特数模型 表达式
    Aoki(1963) ${Pr _{\text{t}}}^{ - 1} = 0.014{{Re} ^{0.45}}{Pr ^{0.2}}\left[ {1 - {\text{exp}}\left( { - \dfrac{1}{{0.014{{{Re} }^{0.45}}{{Pr }^{0.2}}}}} \right)} \right]$
    Reynolds(1975) $ {{Pr}}_{\text{t}}=(1+100P{\text{e}}^{-0.5})\left(\dfrac{1}{1+120{{Re}}^{-0.5}}-0.15\right) $
    Jischa-Rieke(1979) ${Pr _{\text{t}}} = 0.9 + \dfrac{{182.4}}{{ Pr {{{Re} }^{0.888}}}}$
    Kays(1994) ${ Pr _{\text{t}}} = 0.85 + \dfrac{{0.7}}{{\dfrac{{{\nu _{\text{t}}}}}{\nu } \cdot Pr }}$
    Cheng-Tak(2006) $ {{Pr}}_{\text{t}}=\left\{\begin{array}{c}4.12\begin{array}{ccc}\begin{array}{cc}\begin{array}{cc}{}_{}^{}& \end{array}& \end{array}& & \end{array}\begin{array}{cc}\begin{array}{cc}\begin{array}{l}\\ \end{array}& \end{array}& \end{array}0 < Pe\le 1000\\ \dfrac{0.01Pe}{(0.018P{e}^{0.8}-0.0009P\text{e}-\text{1}\text{.6})^{1.25}}\begin{array}{cc}& 1000 < Pe\le 2000\end{array}\\ \dfrac{0.01Pe}{(0.018P{e}^{0.8}-3.4)^{1.25}}\begin{array}{cc}& \end{array}\begin{array}{cccc}& & & 2000 < Pe\le 6000\end{array}\end{array}\right. $
      ν—运动粘度,m2/s;νt—湍流运动粘度,m2/s;Re—雷诺数;Pr—普朗特数;Prt—湍流普朗特数;Pe—贝克莱数,Pe=Pr·Re
    下载: 导出CSV
  • [1] ZHANG J S. Lead–Bismuth Eutectic (LBE): a coolant candidate for Gen. IV advanced nuclear reactor concepts[J]. Advanced Engineering Materials, 2014, 16(4): 349-356. doi: 10.1002/adem.201300296
    [2] GUO C, ZHAO P C, DENG J, et al. Safety analysis of small modular natural circulation lead-cooled fast reactor SNCLFR-100 under unprotected transient[J]. Frontiers in Energy Research, 2021, 9: 678939. doi: 10.3389/fenrg.2021.678939
    [3] XIAO Y, LI J L, DING G Q, et al. Numerical study of spacer-induced heat transfer impairment in mixed and free convection heat transfer of water upward flow[J]. International Communications in Heat and Mass Transfer, 2022, 137: 106294. doi: 10.1016/j.icheatmasstransfer.2022.106294
    [4] JACKSON J D, COTTON M A, AXCELL B P. Studies of mixed convection in vertical tubes[J]. International Journal of Heat and Fluid Flow, 1989, 10(1): 2-15. doi: 10.1016/0142-727X(89)90049-0
    [5] 丁冠群,肖瑶,高新力,等. 格架对低流量对流传热影响的数值研究[J]. 核动力工程,2022, 43(6): 8-14.
    [6] LIU D, GU H Y. Study on heat transfer behavior in rod bundles with spacer grid[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1065-1075. doi: 10.1016/j.ijheatmasstransfer.2017.12.121
    [7] LIU D, GU H Y. Mixed convection heat transfer in a 5 × 5 rod bundles[J]. International Journal of Heat and Mass Transfer, 2017, 113: 914-921. doi: 10.1016/j.ijheatmasstransfer.2017.05.113
    [8] LI J L, XIAO Y, GU H Y, et al. Development of a correlation for mixed convection heat transfer in rod bundles[J]. Annals of Nuclear Energy, 2021, 155: 108151. doi: 10.1016/j.anucene.2021.108151
    [9] LIU Z P, HUANG D S, WANG C L, et al. Flow and heat transfer analysis of lead–bismuth eutectic flowing in a tube under rolling conditions[J]. Nuclear Engineering and Design, 2021, 382: 111373. doi: 10.1016/j.nucengdes.2021.111373
    [10] 冀南,杨俊康,赵鹏程,等. 耦合多变量LSTM与优化算法的铅铋反应堆事故参数预测方法研究[J]. 核动力工程,2023, 44(5): 64-70.
    [11] 苏子威,周涛,刘梦影,等. 液态铅铋合金热物性研究[J]. 核技术,2013, 36(9): 35-39.
    [12] 曾陈,张蕊,刘茂龙,等. 不同湍流模型对铅-铋凝固模拟的影响研究[J]. 核动力工程,2023, 44(S1): 40-45.
    [13] 梁瑞仙,杨凌峰,王译锋,等. 液态铅铋合金回路氧输运特性的数值研究[J]. 核动力工程,2022, 43(6): 187-194.
    [14] FAZIO C. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies[M]. Paris: OECD, 2016: 70-125.
    [15] CHEN F, HUAI X L, CAI J, et al. Investigation on the applicability of turbulent-Prandtl-number models for liquid lead-bismuth eutectic[J]. Nuclear Engineering and Design, 2013, 257: 128-133. doi: 10.1016/j.nucengdes.2013.01.005
    [16] AOKI S. A consideration on the heat transfer in liquid metal[J]. Bulletin of the Tokyo Institute of Technology, 1963, 54: 63-73.
    [17] REYNOLDS A J. The prediction of turbulent Prandtl and Schmidt numbers[J]. International Journal of Heat and Mass Transfer, 1975, 18(9): 1055-1069. doi: 10.1016/0017-9310(75)90223-9
    [18] JISCHA M, RIEKE H B. About the prediction of turbulent Prandtl and Schmidt numbers from modeled transport equations[J]. International Journal of Heat and Mass Transfer, 1979, 22(11): 1547-1555. doi: 10.1016/0017-9310(79)90134-0
    [19] KAYS W M. Turbulent Prandtl number-where are we?[J]. Journal of Heat Transfer, 1994, 116(2): 284-295. doi: 10.1115/1.2911398
    [20] CHENG X, TAK N I. Investigation on turbulent heat transfer to lead–bismuth eutectic flows in circular tubes for nuclear applications[J]. Nuclear Engineering and Design, 2006, 236(4): 385-393. doi: 10.1016/j.nucengdes.2005.09.006
    [21] JOHNSON H A, HARTNETT J P, CLABAUGH W J. Heat transfer to molten lead-bismuth eutectic in turbulent pipe flow[J]. Journal of Fluids Engineering, 1953, 75(6): 1191-1198.
    [22] 张双雷,李良星,宋立明. 轴流铅铋泵流场分析及优化[J]. 核动力工程,2022, 43(3): 158-164.
    [23] 王凯琳,李良星,张双雷,等. 轴流铅铋泵的设计及其水力性能分析[J]. 西安交通大学学报,2020, 54(11): 166-174.
    [24] 曾付林,张小龙,赵鹏程. 铅铋冷却紧密栅内环形燃料棒外周向温度分布不均匀性研究[J]. 核动力工程,2023, 44(6): 95-103.
    [25] 王俊杰. 铅铋冷却绕丝燃料组件热工水力及流致振动特性分析[D]. 上海: 上海交通大学,2022.
    [26] 葛志浩. 液态金属湍流换热的直接数值模拟研究[D]. 合肥: 中国科学技术大学,2018.
    [27] MAROCCO L, DI VALMONTANA A A, WETZEL T. Numerical investigation of turbulent aided mixed convection of liquid metal flow through a concentric annulus[J]. International Journal of Heat and Mass Transfer, 2017, 105: 479-494. doi: 10.1016/j.ijheatmasstransfer.2016.09.107
    [28] UMAVATHI J C, KUMAR J P, CHAMKHA A J, et al. Mixed convection in a vertical porous channel[J]. Transport in Porous Media, 2005, 61(3): 315-335. doi: 10.1007/s11242-005-0260-5
    [29] 祝家银. 垂直圆管内液态金属湍流混合对流换热的大涡模拟研究[D]. 合肥: 中国科学技术大学,2019.
    [30] XIAO Y, PAN J S, GU H Y. Numerical investigation of spacer effects on heat transfer of supercritical fluid flow in an annular channel[J]. International Journal of Heat and Mass Transfer, 2018, 121: 343-353. doi: 10.1016/j.ijheatmasstransfer.2018.01.030
    [31] DING G Q, LI N, LIU B, et al. Numerical study of mixed and free convection heat transfer under ocean conditions[J]. International Journal of Heat and Mass Transfer, 2023, 203: 123811. doi: 10.1016/j.ijheatmasstransfer.2022.123811
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  8
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-04
  • 修回日期:  2024-06-13
  • 刊出日期:  2025-02-15

目录

    /

    返回文章
    返回