Research on the Coupling Experiment of Asymmetric Thermal Stress in Solid Core
-
摘要: 非对称分布热应力耦合导致的燃料与基体相互作用是固态堆芯反应堆分析的关键问题,本研究采用数值模拟与试验相结合的方法,开发了分布式冷源和热源加载方式,对典型结构固态堆芯燃料元件开展了高温下热应力耦合模拟与试验研究。研究结果表明,试验测得的高温应变场与数值模拟结果较为接近,堆芯燃料基体在350℃温差下无失效风险,本研究建立的非对称分布式冷源和热源热应力耦合数值预测方法和试验技术能够用于固态堆芯反应堆非对称热应力分布研究,低温差下燃料元件基体无失效风险。Abstract: The interaction between fuel and matrix caused by asymmetric thermal stress coupling is a key problem in the analysis of solid-core reactor. In this study, a distributed cold source and heat source loading method is developed by combining numerical simulation with experiment, and the thermal stress coupling simulation and experimental study of typical solid-core reactor fuel elements at high temperature are carried out. The research results show that the high temperature strain field measured is close to the numerical simulation result, and there is no risk of failure of the core fuel matrix at 350°C. The numerical prediction method and experimental approach developed in this study for asymmetrically distributed cold and heat source thermal stress coupling can be applied to the analysis of asymmetric thermal stress distribution in solid cores, and there is no risk of failure of the fuel element matrix at low temperature difference.
-
Key words:
- Solid core /
- Asymmetric /
- Thermal stress distribution test /
- Numerical simulation
-
表 1 堆芯结构最大应变
Table 1. Maximum Strain of Core Structure
温差/℃ 轴向应变/% 面内应变/% 50 1.31 1.29 100 1.50 1.58 250 1.70 1.98 350 1.95 2.35 表 2 温差200℃时选取点的试验和数值模拟应变及误差
Table 2. Strains and Errors at Selected Points in Experiment and Numerical Simulation with a Temperature Difference of 200°C
数据点 数值模拟应变/% 试验应变/% 误差/% 1 1.437 1.312 8.683 2 1.993 1.756 11.886 3 1.453 1.359 6.469 4 2.025 1.785 11.861 5 1.473 1.355 8.062 6 1.987 1.799 9.498 -
[1] 余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8. [2] 范唯唯. 中国发布《2017-2045 年航天运输系统发展路线图》[J]. 空间科学学报,2018, 38(1): 6. [3] 柴晓明,马誉高,韩文斌,等. 热管堆固态堆芯三维核热力耦合方法与分析[J]. 原子能科学技术,2021, 55(S2): 189-195. [4] 王金雨,余红星,柴晓明,等. 热管反应堆燃料经济性影响因素初步探索[J]. 核动力工程,2020, 41(3): 197-201. [5] POSTON D I, KAPERNICK R J, GUFFEE R M, et al. Design of a Heatpipe-cooled Mars-surface fission reactor[J]. AIP Conference Proceedings, 2002, 608(1): 1096-1106. [6] MCCLURE P R, REID R S, DIXON D D. Advantages and applications of megawatt-sized heat-pipe reactors: No. LA-UR-12-00257; LA-UR-12-257.[R]. La Grange Park: American Nuclear Society, 2012. [7] MCCLURE P R, POSTON D I, DASARI V R, et al. Design of megawatt power level heat pipe reactors: LA-UR-15-28840[R]. Los Alamos: Los Alamos National Laboratory, 2015. [8] MCCLURE P R, POSTON D I, DIXON D D. Final results of Demonstration Using Flattop Fissions (DUFF) experiment:No. LA-UR-12-25165[R]. Los Alamos: Los Alamos National Lab. , 2012. [9] YAN B H, WANG C, LI L G. The technology of micro heat pipe cooled reactor: a review[J]. Annals of Nuclear Energy, 2020, 135: 106948. doi: 10.1016/j.anucene.2019.106948 [10] HU G, ZHAO S Z, SUN Z Y, et al. A heat pipe cooled modular reactor concept for manned lunar base application[C]//Proceedings of 2013 21st International Conference on Nuclear Engineering. Chengdu: American Society of Mechanical Engineers, 2013: V002T05A031. [11] 葛攀和,郭键,高剑,等. 星表核反应堆电源系统热工概念设计[J]. 载人航天,2017, 23(6): 784-789. [12] 张文文,刘逍,田文喜,等. 兆瓦级空间热管反应堆动力系统概念设计[J]. 原子能科学技术,2017, 51(12): 2160-2164. [13] STRASSER A, SUNDERLAND D. A review of recent LWR fuel failures[C]//Fuel Failure in Normal Operation of Water Reactors: Experience, Mechanisms and Management. Dimitrovgrad: IAEA, 1993: 17-25. [14] 刘逍,田智星,王成龙,等. 高温热管传热特性实验研究[J]. 核动力工程,2020, 41(S1): 106-111. [15] 路怀玉,唐昌兵,李垣明,等. 热管反应堆燃料元件的堆内行为演化模拟研究[J]. 核动力工程,2019, 40(S2): 82-87. [16] MIHAILA B, STAN M, RAMIREZ J, et al. Simulations of coupled heat transport, oxygen diffusion, and thermal expansion in UO2 nuclear fuel elements[J]. Journal of Nuclear Materials, 2009, 394(2-3): 182-189. doi: 10.1016/j.jnucmat.2009.09.007