Experimental Study on Uniaxial Ratcheting Fatigue Behaviour of 16MND5 Steel
-
摘要: 本文旨在分析材料在不同循环载荷作用下的棘轮演化规律,以指导核电站关键部件的寿命预测及结构完整性评价。针对国产反应堆压力容器用16MND5锻造贝氏体钢,在350℃下开展一系列对称和非对称应力控制试验,研究了应力幅和平均应力对棘轮行为的影响。结果表明:该合金在对称与非对称应力循环载荷下均表现出棘轮效应。应力幅值和平均应力的增加降低了疲劳寿命。循环演化表现出初始循环硬化,然后循环软化,最后加速软化。相同应力幅下,平均应力的引入促进了软化。棘轮应变不随拉伸平均应力的增加而单调增加,存在一个最不利的平均应力导致棘轮-疲劳交互最为明显。断口形貌分析表明,根据应力水平的大小,试样可分为疲劳失效和发生较大塑性应变的棘轮失效。Abstract: The aim of this paper is to analyze the ratcheting evolution law of materials under different cyclic loads, so as to guide the life prediction and structural integrity evaluation of critical components in nuclear power plants. A series of symmetric and asymmetric stress control tests were carried out at 350°C on the domestically produced 16MND5 forged bainitic steel of reactor pressure vessel to investigate the effects of stress amplitude and mean stress on the ratcheting behavior. The results show that the alloy exhibits ratcheting effects under both symmetric and asymmetric stress cyclic loading. The increase in stress amplitude and mean stress reduces the fatigue life. The cyclic evolution exhibits initial cyclic hardening, followed by cyclic softening and finally accelerated softening. The softening is promoted by the introduction of mean stress at the same stress amplitude. Ratcheting strain does not increase monotonically with increasing tensile mean stress, and the presence of a most unfavorable mean stress leads to the most pronounced ratcheting-fatigue interaction. Fracture morphology analysis showed that, depending on the magnitude of the stress level, the specimens could be categorized into fatigue failures and ratcheting failures in which large plastic strains occurred.
-
Key words:
- 16MND5 steel /
- Stress cycling /
- Ratcheting effect /
- Ratcheting-fatigue interaction /
- Fracture morphology
-
表 1 16MDND5钢高温基本力学性能
Table 1. Basic Mechanical Properties of 16MDND5 Steel at High Temperature
试验温度
/℃弹性模量
E/GPa屈服强度
Rp0.2/MPa抗拉强度
Rm/MPa350 199±5 420±10 573±5 表 2 16MND5钢高温棘轮疲劳试验参数和结果
Table 2. Parameters and Results of High Temperature Ratcheting-Fatigue Tests on 16MND5 Steel
试验工况 平均应力/MPa 应力幅/MPa 循环周次 对称循环 0 400 28664 0 420 8534 0 440 3178 0 460 1355 非对称循环 −20 400 20698 −10 400 19767 10 400 21974 20 400 7131 30 400 15699 10 420 5434 10 440 2346 10 460 999* *表示应变达到引伸计极限 -
[1] 王丛林,柴晓明,杨博,等. 先进核能技术发展及展望[J]. 核动力工程,2023, 44(5): 1-5. [2] 房永刚,佟振峰,初起宝,等. 某核电厂RPV辐照脆化性能预测与延续运行评估[J]. 核动力工程,2023, 44(4): 192-197. [3] 李承亮,张明乾. 压水堆核电站反应堆压力容器材料概述[J]. 材料导报,2008, 22(9): 65-68. doi: 10.3321/j.issn:1005-023X.2008.09.018 [4] 刘才学,罗能,何攀,等. 反应堆关键设备健康监测与故障诊断技术研究进展[J]. 核动力工程,2023, 44(3): 8-20. [5] 梁宝乙,白晶,赵长春,等. 核电压力容器锻件用16MND5钢的热处理工艺[J]. 钢铁研究学报,2012, 24(1): 44-47. [6] 胡海洋,刘徐源,王爽,等. 回火工艺对核电用16MND5钢板组织和性能的影响[J]. 材料热处理学报,2017, 38(9): 137-141. [7] PAUL S K, SIVAPRASAD S, DHAR S, et al. True stress control asymmetric cyclic plastic behavior in SA333 C–Mn steel[J]. International Journal of Pressure Vessels and Piping, 2010, 87(8): 440-446. doi: 10.1016/j.ijpvp.2010.07.008 [8] PAUL S K. A critical review of experimental aspects in ratcheting fatigue: microstructure to specimen to component[J]. Journal of Materials Research and Technology, 2019, 8(5): 4894-4914. doi: 10.1016/j.jmrt.2019.06.014 [9] KANG G Z, LIU Y J, LI Z. Experimental study on ratchetting-fatigue interaction of SS304 stainless steel in uniaxial cyclic stressing[J]. Materials Science and Engineering: A, 2006, 435-436: 396-404. doi: 10.1016/j.msea.2006.07.006 [10] KANG G Z, LI Y G, ZHANG J, et al. Uniaxial ratcheting and failure behaviors of two steels[J]. Theoretical and Applied Fracture Mechanics, 2005, 43(2): 199-209. doi: 10.1016/j.tafmec.2005.01.005 [11] 樊译璘,阚前华,赵吉中,等. 不同钢轨材料棘轮行为试验研究[J]. 机械工程学报,2020, 56(2): 35-42. [12] 张娟,康国政,高庆,等. 304不锈钢高温非比例多轴棘轮行为实验研究[J]. 核动力工程,2006, 27(5): 61-64. doi: 10.3969/j.issn.0258-0926.2006.05.013 [13] 阚前华,史智,康国政,等. 304不锈钢非比例多轴时间相关棘轮行为的本构模型研究[J]. 核动力工程,2009, 30(3): 51-55,61. [14] LIN Y C, CHEN X M, CHEN G. Uniaxial ratcheting and low-cycle fatigue failure behaviors of AZ91D magnesium alloy under cyclic tension deformation[J]. Journal of Alloys and Compounds, 2011, 509(24): 6838-6843. doi: 10.1016/j.jallcom.2011.03.129 [15] ZHENG X T, WU K W, WANG W, et al. Low cycle fatigue and ratcheting behavior of 35CrMo structural steel at elevated temperature[J]. Nuclear Engineering and Design, 2017, 314: 285-292. doi: 10.1016/j.nucengdes.2017.01.016 [16] 谢国福,张超,邢睿思,等. 长时热老化对16MND5疲劳性能的影响[J]. 科技视界,2021(10): 76-80. [17] XING R S, YU D J, XIE G F, et al. Effect of thermal aging on mechanical properties of a bainitic forging steel for reactor pressure vessel[J]. Materials Science and Engineering: A, 2018, 720: 169-175. doi: 10.1016/j.msea.2018.02.036 [18] XING R S, CHEN X, YU D J. Evolution of impact properties of 16MND5 forgings for nuclear reactor pressure vessel during thermal aging at 500℃[J]. Key Engineering Materials, 2019, 795: 54-59. doi: 10.4028/www.scientific.net/KEM.795.54 [19] MU S D, LI Y J, SONG D R, et al. Low cycle fatigue behavior and failure mechanism of wire arc additive manufacturing 16MND5 bainitic steel[J]. Journal of Materials Engineering and Performance, 2021, 30(7): 4911-4924. doi: 10.1007/s11665-021-05554-1 [20] 秦卓,何西扣,刘正东,等. 电熔增材制造16MND5钢的低周疲劳特性[J]. 钢铁研究学报,2020, 32(4): 335-343. [21] PARK S J, KIM K S, KIM H S. Ratcheting behaviour and mean stress considerations in uniaxial low-cycle fatigue of Inconel 718 at 649℃[J]. Fatigue & Fracture of Engineering Materials & Structures, 2007, 30(11): 1076-1083. [22] KONG W W, WANG Y Q, CHEN Y P, et al. Investigation of uniaxial ratcheting fatigue behaviours and fracture mechanism of GH742 superalloy at 923 K[J]. Materials Science and Engineering: A, 2022, 831: 142173. doi: 10.1016/j.msea.2021.142173 [23] KANG G Z, LIU Y J. Uniaxial ratchetting and low-cycle fatigue failure of the steel with cyclic stabilizing or softening feature[J]. Materials Science and Engineering: A, 2008, 472(1-2): 258-268. doi: 10.1016/j.msea.2007.03.029 [24] MISHRA P, SRINIVAS N C S, SASTRY G V S, et al. Ratcheting fatigue of superalloy IN-617 under tensile mean stress at RT[J]. Transactions of the Indian Institute of Metals, 2022, 75(12): 3127-3138. doi: 10.1007/s12666-022-02667-6 [25] LIU Y M, WANG L, CHEN G, et al. Investigation on ratcheting-fatigue behavior and damage mechanism of GH4169 at 650℃[J]. Materials Science and Engineering: A, 2019, 743: 314-321. doi: 10.1016/j.msea.2018.11.092