高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

16MND5钢单轴棘轮疲劳行为试验研究

莫旭阳 朱明亮 张尚林 杨立才 陈尧 轩福贞

莫旭阳, 朱明亮, 张尚林, 杨立才, 陈尧, 轩福贞. 16MND5钢单轴棘轮疲劳行为试验研究[J]. 核动力工程, 2025, 46(1): 160-168. doi: 10.13832/j.jnpe.2025.01.0160
引用本文: 莫旭阳, 朱明亮, 张尚林, 杨立才, 陈尧, 轩福贞. 16MND5钢单轴棘轮疲劳行为试验研究[J]. 核动力工程, 2025, 46(1): 160-168. doi: 10.13832/j.jnpe.2025.01.0160
Mo Xuyang, Zhu Mingliang, Zhang Shanglin, Yang Licai, Chen Yao, Xuan Fuzhen. Experimental Study on Uniaxial Ratcheting Fatigue Behaviour of 16MND5 Steel[J]. Nuclear Power Engineering, 2025, 46(1): 160-168. doi: 10.13832/j.jnpe.2025.01.0160
Citation: Mo Xuyang, Zhu Mingliang, Zhang Shanglin, Yang Licai, Chen Yao, Xuan Fuzhen. Experimental Study on Uniaxial Ratcheting Fatigue Behaviour of 16MND5 Steel[J]. Nuclear Power Engineering, 2025, 46(1): 160-168. doi: 10.13832/j.jnpe.2025.01.0160

16MND5钢单轴棘轮疲劳行为试验研究

doi: 10.13832/j.jnpe.2025.01.0160
基金项目: 国家自然科学基金(52205173);四川省自然科学基金(2023NSFSC0912)
详细信息
    作者简介:

    莫旭阳(1999—),男,硕士研究生,主要研究方向为机械结构疲劳与断裂,E-mail: xuyangmo_ecust@163.com

    通讯作者:

    朱明亮,E-mail: mlzhu@ecust.edu.cn

  • 中图分类号: TL341

Experimental Study on Uniaxial Ratcheting Fatigue Behaviour of 16MND5 Steel

  • 摘要: 本文旨在分析材料在不同循环载荷作用下的棘轮演化规律,以指导核电站关键部件的寿命预测及结构完整性评价。针对国产反应堆压力容器用16MND5锻造贝氏体钢,在350℃下开展一系列对称和非对称应力控制试验,研究了应力幅和平均应力对棘轮行为的影响。结果表明:该合金在对称与非对称应力循环载荷下均表现出棘轮效应。应力幅值和平均应力的增加降低了疲劳寿命。循环演化表现出初始循环硬化,然后循环软化,最后加速软化。相同应力幅下,平均应力的引入促进了软化。棘轮应变不随拉伸平均应力的增加而单调增加,存在一个最不利的平均应力导致棘轮-疲劳交互最为明显。断口形貌分析表明,根据应力水平的大小,试样可分为疲劳失效和发生较大塑性应变的棘轮失效。

     

  • 图  1  16MND5钢高温单轴应力-应变曲线

    Figure  1.  High Temperature Uniaxial Stress-Strain Curve of 16MND5 Steel

    图  2  对称应力循环载荷下不同应力幅滞回环演化曲线

    Figure  2.  Evolution Curves of Hysteresis Loop with Different Stress Amplitudes under Symmetric Cyclic Loading

    图  3  对称应力循环载荷下棘轮应变随循环周次的演化

    Figure  3.  Evolution of Ratcheting Strain with Cycle under Symmetric Cyclic Loading

    图  4  对称应力循环载荷下响应应变幅随寿命分数的演化

    Figure  4.  Evolution of Response Strain Amplitude with Life Fraction under Symmetric Cyclic Loading

    图  5  非对称应力循环载荷下滞回环演化曲线

    Figure  5.  Hysteresis Loop Evolution Curves under Asymmetric Cyclic Loading

    图  6  非对称应力循环载荷下棘轮应变随循环周次的演化

    Figure  6.  Evolution of Ratcheting Strain with Cycle under Asymmetric Cyclic Loading

    图  7  非对称应力循环载荷下响应应变幅随寿命分数的演化

    Figure  7.  Evolution of Response Strain Amplitude with Life Fraction under Asymmetric Cyclic Loading

    图  8  软化因子演化曲线

    Figure  8.  Evolution Curves of Softening Factor

    图  9  负平均应力下滞回环演化曲线

    Figure  9.  Evolution Curves of Hysteresis Loop under Negative Mean Stress

    图  10  不同平均应力下棘轮应变随循环周次的演化

    Figure  10.  Evolution of Ratcheting Strain with Cycle for Different Average Stress

    图  11  半寿命阶段棘轮应变率与耗散能随平均应力的变化

    Figure  11.  Variation of Ratcheting Strain Rate and Dissipation Energy with Mean Stress at Half-Life Stage

    图  12  对称应力循环载荷下不同应力幅疲劳试样断裂表面SEM观察

    Figure  12.  SEM Observation of Fracture Surfaces of Fatigue Specimens with Different Stress Amplitudes under Symmetric Cyclic Loading

    图  13  非对称应力循环载荷下不同应力幅疲劳试样断裂表面SEM观察

    Figure  13.  SEM Observation of Fracture Surfaces of Fatigue Specimens with Different Stress Amplitudes under Asymmetric Cyclic Loading

    图  14  高应力幅下试样发生棘轮失效

    Figure  14.  Ratcheting Failure of Specimen at High Stress Amplitude

    表  1  16MDND5钢高温基本力学性能

    Table  1.   Basic Mechanical Properties of 16MDND5 Steel at High Temperature

    试验温度
    /℃
    弹性模量
    E/GPa
    屈服强度
    Rp0.2/MPa
    抗拉强度
    Rm/MPa
    350199±5420±10573±5
    下载: 导出CSV

    表  2  16MND5钢高温棘轮疲劳试验参数和结果

    Table  2.   Parameters and Results of High Temperature Ratcheting-Fatigue Tests on 16MND5 Steel

    试验工况 平均应力/MPa 应力幅/MPa 循环周次
    对称循环 0 400 28664
    0 420 8534
    0 440 3178
    0 460 1355
    非对称循环 −20 400 20698
    −10 400 19767
    10 400 21974
    20 400 7131
    30 400 15699
    10 420 5434
    10 440 2346
    10 460 999*
      *表示应变达到引伸计极限
    下载: 导出CSV
  • [1] 王丛林,柴晓明,杨博,等. 先进核能技术发展及展望[J]. 核动力工程,2023, 44(5): 1-5.
    [2] 房永刚,佟振峰,初起宝,等. 某核电厂RPV辐照脆化性能预测与延续运行评估[J]. 核动力工程,2023, 44(4): 192-197.
    [3] 李承亮,张明乾. 压水堆核电站反应堆压力容器材料概述[J]. 材料导报,2008, 22(9): 65-68. doi: 10.3321/j.issn:1005-023X.2008.09.018
    [4] 刘才学,罗能,何攀,等. 反应堆关键设备健康监测与故障诊断技术研究进展[J]. 核动力工程,2023, 44(3): 8-20.
    [5] 梁宝乙,白晶,赵长春,等. 核电压力容器锻件用16MND5钢的热处理工艺[J]. 钢铁研究学报,2012, 24(1): 44-47.
    [6] 胡海洋,刘徐源,王爽,等. 回火工艺对核电用16MND5钢板组织和性能的影响[J]. 材料热处理学报,2017, 38(9): 137-141.
    [7] PAUL S K, SIVAPRASAD S, DHAR S, et al. True stress control asymmetric cyclic plastic behavior in SA333 C–Mn steel[J]. International Journal of Pressure Vessels and Piping, 2010, 87(8): 440-446. doi: 10.1016/j.ijpvp.2010.07.008
    [8] PAUL S K. A critical review of experimental aspects in ratcheting fatigue: microstructure to specimen to component[J]. Journal of Materials Research and Technology, 2019, 8(5): 4894-4914. doi: 10.1016/j.jmrt.2019.06.014
    [9] KANG G Z, LIU Y J, LI Z. Experimental study on ratchetting-fatigue interaction of SS304 stainless steel in uniaxial cyclic stressing[J]. Materials Science and Engineering: A, 2006, 435-436: 396-404. doi: 10.1016/j.msea.2006.07.006
    [10] KANG G Z, LI Y G, ZHANG J, et al. Uniaxial ratcheting and failure behaviors of two steels[J]. Theoretical and Applied Fracture Mechanics, 2005, 43(2): 199-209. doi: 10.1016/j.tafmec.2005.01.005
    [11] 樊译璘,阚前华,赵吉中,等. 不同钢轨材料棘轮行为试验研究[J]. 机械工程学报,2020, 56(2): 35-42.
    [12] 张娟,康国政,高庆,等. 304不锈钢高温非比例多轴棘轮行为实验研究[J]. 核动力工程,2006, 27(5): 61-64. doi: 10.3969/j.issn.0258-0926.2006.05.013
    [13] 阚前华,史智,康国政,等. 304不锈钢非比例多轴时间相关棘轮行为的本构模型研究[J]. 核动力工程,2009, 30(3): 51-55,61.
    [14] LIN Y C, CHEN X M, CHEN G. Uniaxial ratcheting and low-cycle fatigue failure behaviors of AZ91D magnesium alloy under cyclic tension deformation[J]. Journal of Alloys and Compounds, 2011, 509(24): 6838-6843. doi: 10.1016/j.jallcom.2011.03.129
    [15] ZHENG X T, WU K W, WANG W, et al. Low cycle fatigue and ratcheting behavior of 35CrMo structural steel at elevated temperature[J]. Nuclear Engineering and Design, 2017, 314: 285-292. doi: 10.1016/j.nucengdes.2017.01.016
    [16] 谢国福,张超,邢睿思,等. 长时热老化对16MND5疲劳性能的影响[J]. 科技视界,2021(10): 76-80.
    [17] XING R S, YU D J, XIE G F, et al. Effect of thermal aging on mechanical properties of a bainitic forging steel for reactor pressure vessel[J]. Materials Science and Engineering: A, 2018, 720: 169-175. doi: 10.1016/j.msea.2018.02.036
    [18] XING R S, CHEN X, YU D J. Evolution of impact properties of 16MND5 forgings for nuclear reactor pressure vessel during thermal aging at 500℃[J]. Key Engineering Materials, 2019, 795: 54-59. doi: 10.4028/www.scientific.net/KEM.795.54
    [19] MU S D, LI Y J, SONG D R, et al. Low cycle fatigue behavior and failure mechanism of wire arc additive manufacturing 16MND5 bainitic steel[J]. Journal of Materials Engineering and Performance, 2021, 30(7): 4911-4924. doi: 10.1007/s11665-021-05554-1
    [20] 秦卓,何西扣,刘正东,等. 电熔增材制造16MND5钢的低周疲劳特性[J]. 钢铁研究学报,2020, 32(4): 335-343.
    [21] PARK S J, KIM K S, KIM H S. Ratcheting behaviour and mean stress considerations in uniaxial low-cycle fatigue of Inconel 718 at 649℃[J]. Fatigue & Fracture of Engineering Materials & Structures, 2007, 30(11): 1076-1083.
    [22] KONG W W, WANG Y Q, CHEN Y P, et al. Investigation of uniaxial ratcheting fatigue behaviours and fracture mechanism of GH742 superalloy at 923 K[J]. Materials Science and Engineering: A, 2022, 831: 142173. doi: 10.1016/j.msea.2021.142173
    [23] KANG G Z, LIU Y J. Uniaxial ratchetting and low-cycle fatigue failure of the steel with cyclic stabilizing or softening feature[J]. Materials Science and Engineering: A, 2008, 472(1-2): 258-268. doi: 10.1016/j.msea.2007.03.029
    [24] MISHRA P, SRINIVAS N C S, SASTRY G V S, et al. Ratcheting fatigue of superalloy IN-617 under tensile mean stress at RT[J]. Transactions of the Indian Institute of Metals, 2022, 75(12): 3127-3138. doi: 10.1007/s12666-022-02667-6
    [25] LIU Y M, WANG L, CHEN G, et al. Investigation on ratcheting-fatigue behavior and damage mechanism of GH4169 at 650℃[J]. Materials Science and Engineering: A, 2019, 743: 314-321. doi: 10.1016/j.msea.2018.11.092
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  8
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-09
  • 修回日期:  2024-07-09
  • 刊出日期:  2025-02-15

目录

    /

    返回文章
    返回