Progress and Considerations on Candidate Cladding Materials for Supercritical Water-Cooled Reactors
-
摘要: 超临界水冷堆(SCWR)具有热效率高、结构简单等技术优势,是第四代核能系统国际论坛推荐的6个堆型之一。 本文首先回顾了SCWR的包壳设计要求和主要性能挑战,然后对经过较多测试的商用候选包壳材料的均匀腐蚀、应力腐蚀及辐照性能进行了回顾。铁素体/马氏体(F/M)钢、奥氏体不锈钢及镍基合金均存在某方面的性能不足。最后,介绍了近年来新兴的SCWR候选包壳材料,包括新型含铝奥氏体不锈钢、氧化物弥散强化钢、梯度材料及其他组织改进技术的研究进展。Abstract: The Supercritical Water-cooled Reactor (SCWR) is one of the six reactor types recommended by the Generation IV International Forum (GIF) due to its high thermal efficiency and simple structural design. This paper provides an overview of the design requirements and key performance challenges for SCWR cladding material, including the general corrosion, stress corrosion and irradiation properties of commercial candidate cladding materials that have been tested a lot. Ferrite/Martensite (F/M) steel, austenitic stainless steel and nickel-based alloy all have some performance deficiencies. Finally, the recent research progress of novel SCWR candidate cladding materials is reviewed, including alumina-forming austenitic (AFA) steels, oxide dispersion strengthened (ODS) steels, functionally gradient materials and microstructure improvement techniques.
-
表 1 SCWR商用候选包壳材料及其性能比较[8]
Table 1. Comparison of SCWR Commercial Candidate Cladding Materials and Their Properties[8]
合金类型 代表材料 高温力学性能 耐高温腐蚀性能 耐高温蠕变性能 抗辐照/中子性能 F/M钢(BCC相) T91、P92、P122、HT9、NF616 优秀 较差 一般 优秀 奥氏体不锈钢(FCC相) 310S、800H、HR3C、304、316L 优秀 一般 较差 一般 镍基合金(FCC相) 690、625、PE16、 C276、X750 优秀 优秀 一般 较差 -
[1] 臧金光,黄彦平. 超临界水冷堆研发进展[J]. 核动力工程,2021, 42(6): 1-4. [2] 姚磊,夏榜样,卢迪,等. 超临界水冷堆燃料组件及堆芯方案简化设计研究[J]. 核动力工程,2020, 41(4): 45-49. [3] 甯忠豪,王连杰,卢迪,等. 超临界水冷堆CSR150概念设计[J]. 核动力工程,2023, 44(S1): 9-13, doi: 10.13832/j.jnpe.2023.S1.0009. [4] 周禹,张宏亮,李满昌,等. 超临界水冷堆堆内构件选材研究[J]. 核动力工程,2013, 34(1): 60-64. doi: 10.3969/j.issn.0258-0926.2013.01.013 [5] ZHENG H, YU T, QU C T, et al. Basic characteristics and application progress of supercritical water[J]. IOP Conference Series: Earth and Environmental Science, 2020, 555(1): 012036. doi: 10.1088/1755-1315/555/1/012036 [6] MANDAPAKA K K, CAHYADI R S, YALISOVE S, et al. Corrosion behavior of ceramic-coated ZIRLOTM exposed to supercritical water[J]. Journal of Nuclear Materials, 2018, 498: 495-504. doi: 10.1016/j.jnucmat.2017.10.040 [7] ZHANG L F, BAO Y C, TANG R. Selection and corrosion evaluation tests of candidate SCWR fuel cladding materials[J]. Nuclear Engineering and Design, 2012, 249: 180-187. doi: 10.1016/j.nucengdes.2011.08.086 [8] GUZONAS D, EDWARDS M, ZHENG W Y. Assessment of candidate fuel cladding alloys for the Canadian supercritical water-cooled reactor concept[J]. Journal of Nuclear Engineering and Radiation Science, 2016, 2(1): 011016. doi: 10.1115/1.4031502 [9] WALTERS L, WRIGHT M, GUZONAS D. Irradiation issues and material selection for Canadian SCWR components[J]. Journal of Nuclear Engineering and Radiation Science, 2018, 4(3): 031005. doi: 10.1115/1.4038367 [10] DONG Z Q, LI M, BEHNAMIAN Y, et al. Effects of Si, Mn on the corrosion behavior of ferritic–martensitic steels in supercritical water (SCW) environments[J]. Corrosion Science, 2020, 166: 108432. doi: 10.1016/j.corsci.2020.108432 [11] CABET C, DALLE F, GAGANIDZE E, et al. Ferritic-martensitic steels for fission and fusion applications[J]. Journal of Nuclear Materials, 2019, 523: 510-537. doi: 10.1016/j.jnucmat.2019.05.058 [12] MEIER G H, JUNG K, MU N, et al. Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe–Cr and Fe–Cr–X alloys[J]. Oxidation of Metals, 2010, 74(5-6): 319-340. doi: 10.1007/s11085-010-9215-5 [13] HUANG T, SU H Z, ZHOU Y H, et al. Comparison of the corrosion behavior of four Fe-Cr-Ni austenitic alloys in supercritical water[J]. Journal of Nuclear Materials, 2025, 603: 155409. doi: 10.1016/j.jnucmat.2024.155409 [14] ITOH M. Time-dependent power laws in the oxidation and corrosion of metals and alloys[J]. Scientific Reports, 2022, 12(1): 6944. doi: 10.1038/s41598-022-10748-1 [15] FROMHOLD JR A T. Metal oxidation kinetics from the viewpoint of a physicist: the microscopic motion of charged defects through oxides[J]. Langmuir, 1987, 3(6): 886-896. doi: 10.1021/la00078a004 [16] CHEN K, ZHANG L F, SHEN Z. Understanding the surface oxide evolution of T91 ferritic-martensitic steel in supercritical water through advanced characterization[J]. Acta Materialia, 2020, 194: 156-167. doi: 10.1016/j.actamat.2020.05.016 [17] NEZAKAT M, AKHIANI H, PENTTILÄ S, et al. Oxidation behavior of austenitic stainless steel 316L and 310S in air and supercritical water[J]. Journal of Nuclear Engineering and Radiation Science, 2016, 2(2): 021008. doi: 10.1115/1.4031817 [18] GALAN F, BUDU A. Structural materials candidate for supercritical water-cooled reactor[J]. UPB Scientific Bulletin, Series C: Electrical Engineering, 2021, 83(1): 277-286. [19] GUO X L, FAN Y, GAO W H, et al. Corrosion resistance of candidate cladding materials for supercritical water reactor[J]. Annals of Nuclear Energy, 2019, 127: 351-363. doi: 10.1016/j.anucene.2018.12.007 [20] LEE J H, KASADA R, KIMURA A, et al. Influence of alloy composition and temperature on corrosion behavior of ODS ferritic steels[J]. Journal of Nuclear Materials, 2011, 417(1-3): 1225-1228. doi: 10.1016/j.jnucmat.2010.12.279 [21] ZHAN Z X, HUANG X, ZHAO Q, et al. Effect of oxygen concentrations on the corrosion behavior of a duplex-phase FeNiCrCuAl high entropy alloy in supercritical water[J]. Journal of Nuclear Materials, 2022, 572: 154046. doi: 10.1016/j.jnucmat.2022.154046 [22] HUANG X, LI J, AMIRKHIZ B S, et al. Effect of water density on the oxidation behaviour of alloy A-286 at 625 C–a TEM study[J]. Journal of Nuclear Materials, 2015, 467: 758-769. doi: 10.1016/j.jnucmat.2015.10.023 [23] 黄涛,苏豪展,张乐福,等. 微观组织对800H合金在超临界水中腐蚀行为的影响规律[J]. 核动力工程,2023, 44(5): 251-258, doi: 10.13832/j.jnpe.2023.05.0251. [24] WANG J M, ZHOU Y H, WU Y L, et al. Revealing the superior oxidation resistance of alloy 690 in deaerated supercritical water at 600 C through advanced characterization[J]. Materials Characterization, 2024, 210: 113853. doi: 10.1016/j.matchar.2024.113853 [25] KAMAYA M, HARUNA T. Influence of local stress on initiation behavior of stress corrosion cracking for sensitized 304 stainless steel[J]. Corrosion Science, 2007, 49(8): 3303-3324. doi: 10.1016/j.corsci.2007.01.011 [26] ZHANG L F, CHEN K, DU D H, et al. Characterizing the effect of creep on stress corrosion cracking of cold worked Alloy 690 in supercritical water environment[J]. Journal of Nuclear Materials, 2017, 492: 32-40. doi: 10.1016/j.jnucmat.2017.05.018 [27] JE H, KIMURA A. Stress corrosion cracking susceptibility of oxide dispersion strengthened ferritic steel in supercritical pressurized water dissolved with different hydrogen and oxygen contents[J]. Corrosion Science, 2014, 78: 193-199. doi: 10.1016/j.corsci.2013.09.016 [28] 苏豪展,王鹏,张乐福. 工质压力及蠕变对冷变形310S不锈钢在超临界水环境下的应力腐蚀开裂行为影响研究[J]. 核动力工程,2022, 43(6): 108-116. doi: 10.13832/j.jnpe.2022.06.0108. [29] SHEN Z, ZHANG L F, TANG R, et al. The effect of temperature on the SSRT behavior of austenitic stainless steels in SCW[J]. Journal of Nuclear Materials, 2014, 454(1-3): 274-282. doi: 10.1016/j.jnucmat.2014.08.006 [30] CHEN K, WANG J M, SHEN Z, et al. Comparison of the stress corrosion cracking growth behavior of cold worked Alloy 690 in subcritical and supercritical water[J]. Journal of Nuclear Materials, 2019, 520: 235-244. doi: 10.1016/j.jnucmat.2019.04.017 [31] SU H Z, HUANG T, WANG J M, et al. The cracking growth behavior of a sensitized Alloy 800H in supercritical water[J]. Journal of Nuclear Materials, 2023, 583: 154509. doi: 10.1016/j.jnucmat.2023.154509 [32] WAS G S, AMPORNRAT P, GUPTA G, et al. Corrosion and stress corrosion cracking in supercritical water[J]. Journal of Nuclear Materials, 2007, 371(1-3): 176-201. doi: 10.1016/j.jnucmat.2007.05.017 [33] NOVOTNY R, HÄHNER P, SIEGL J, et al. Stress corrosion cracking susceptibility of austenitic stainless steels in supercritical water conditions[J]. Journal of Nuclear Materials, 2011, 409(2): 117-123. doi: 10.1016/j.jnucmat.2010.09.018 [34] CHEN K, WANG J M, DU D H, et al. Stress corrosion crack growth behavior of type 310S stainless steel in supercritical water[J]. Corrosion, 2018, 74(7): 776-787. doi: 10.5006/2775 [35] 郑中成,郭立平,唐睿. 超临界水冷堆燃料包壳材料的辐照损伤研究进展[J]. 原子核物理评论,2017, 34(2): 211-218. [36] ZHOU R S, WEST E A, JIAO Z J, et al. Irradiation-assisted stress corrosion cracking of austenitic alloys in supercritical water[J]. Journal of Nuclear Materials, 2009, 395(1-3): 11-22. doi: 10.1016/j.jnucmat.2009.09.010 [37] TEYSSEYRE S, JIAO Z, WEST E, et al. Effect of irradiation on stress corrosion cracking in supercritical water[J]. Journal of Nuclear Materials, 2007, 371(1-3): 107-117. doi: 10.1016/j.jnucmat.2007.05.008 [38] WANG M, SUN H Y, ZHENG W Y, et al. Creep behavior of an alumina-forming austenitic steel with simple alloy design[J]. Materials Today Communications, 2020, 25: 101303. doi: 10.1016/j.mtcomm.2020.101303 [39] REN J, YU L M, LIU C X, et al. Creep properties, microstructural evolution, and fracture mechanism of an Al added high Cr ODS steel during creep deformation at 600 C[J]. Journal of Nuclear Materials, 2022, 558: 153376. doi: 10.1016/j.jnucmat.2021.153376 [40] WEN H Y, ZHAO B B, ZHOU J, et al. Early segregation and precipitation at triple junction in an alumina-forming austenitic steel[J]. Materials Letters, 2021, 283: 128802. doi: 10.1016/j.matlet.2020.128802 [41] JOZAGHI T, WANG C, ARROYAVE R, et al. Design of alumina-forming austenitic stainless steel using genetic algorithms[J]. Materials & Design, 2020, 186: 108198. doi: 10.1016/j.matdes.2019.108198 [42] GAO Y, SUN D Y, LIU Z, et al. Oxide scale growth behavior of alumina-forming austenitic stainless steel exposed to supercritical water[J]. Corrosion Science, 2024, 227: 111681. doi: 10.1016/j.corsci.2023.111681 [43] GAO Y, SUN D Y, LIU Z, et al. Anomalous oxidation rate-temperature dependence of alumina-forming austenitic stainless steels exposed to 500–600 °C supercritical water[J]. Corrosion Science, 2024, 231: 111936. doi: 10.1016/j.corsci.2024.111936 [44] SUN H Y, YANG H J, WANG M, et al. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water[J]. Journal of Nuclear Materials, 2017, 484: 339-346. doi: 10.1016/j.jnucmat.2016.10.039 [45] LIU L, FAN C L, SUN H Y, et al. Research progress of alumina-forming austenitic stainless steels: a review[J]. Materials, 2022, 15(10): 3515. doi: 10.3390/ma15103515 [46] SHEN L, WU B J, ZHAO K, et al. Reason for negative effect of Nb addition on oxidation resistance of alumina-forming austenitic stainless steel at 1323 K[J]. Corrosion Science, 2021, 191: 109754. doi: 10.1016/j.corsci.2021.109754 [47] NIE S H, CHEN Y, REN X, et al. Corrosion of alumina-forming austenitic steel Fe–20Ni–14Cr–3Al–0.6Nb–0.1Ti in supercritical water[J]. Journal of Nuclear Materials, 2010, 399(2-3): 231-235. doi: 10.1016/j.jnucmat.2010.01.025 [48] HU B, TROTTER G, WANG Z W, et al. Effect of boron and carbon addition on microstructure and mechanical properties of the aged gamma-prime strengthened alumina-forming austenitic alloys[J]. Intermetallics, 2017, 90: 36-49. doi: 10.1016/j.intermet.2017.06.011 [49] GAO Y, SU R R, LIU Z, et al. High-resolution characterization reveals the role of Al content in the evolution of oxide scales formed on alumina-forming alloy exposed to supercritical water[J]. Corrosion Science, 2024, 231: 111968. doi: 10.1016/j.corsci.2024.111968 [50] UKAI S, FUJIWARA M. Perspective of ODS alloys application in nuclear environments[J]. Journal of Nuclear Materials, 2002, 307-311: 749-757. doi: 10.1016/S0022-3115(02)01043-7 [51] EISELT C C, SCHENDZIELORZ H, SEUBERT A, et al. ODS-materials for high temperature applications in advanced nuclear systems[J]. Nuclear Materials and Energy, 2016, 9: 22-28. doi: 10.1016/j.nme.2016.08.017 [52] CAO S G, ZHOU Z J. Microstructure and mechanical properties of an ODS ferritic steel with very low Cr content[J]. Journal of Nuclear Materials, 2021, 551: 152971. doi: 10.1016/j.jnucmat.2021.152971 [53] ROGOZHKIN S, BOGACHEV A, KORCHUGANOVA O, et al. Nanostructure evolution in ODS steels under ion irradiation[J]. Nuclear Materials and Energy, 2016, 9: 66-74. doi: 10.1016/j.nme.2016.06.011 [54] SONG P, MORRALL D, ZHANG Z X, et al. Radiation response of ODS ferritic steels with different oxide particles under ion-irradiation at 550 °C[J]. Journal of Nuclear Materials, 2018, 502: 76-85. doi: 10.1016/j.jnucmat.2018.02.007 [55] GAO W H, GUO X L, SHEN Z, et al. Corrosion behavior of oxide dispersion strengthened ferritic steels in supercritical water[J]. Journal of Nuclear Materials, 2017, 486: 1-10. doi: 10.1016/j.jnucmat.2017.01.014 [56] XU S, LONG F, PERSAUD S Y, et al. Oxidation behavior of 9Cr-4.5Al ODS steel in 600 °C supercritical water and the effect of pre-oxidation[J]. Corrosion Science, 2020, 165: 108380. doi: 10.1016/j.corsci.2019.108380 [57] SHEN Z, CHEN K, GUO X L, et al. A study on the corrosion and stress corrosion cracking susceptibility of 310-ODS steel in supercritical water[J]. Journal of Nuclear Materials, 2019, 514: 56-65. doi: 10.1016/j.jnucmat.2018.11.016 [58] EDWARDS M, ROUSSEAU S, NOVOTNÝ R, et al. The reproducibility of corrosion testing in supercritical water—results of a second international interlaboratory comparison exercise[J]. Journal of Nuclear Materials, 2022, 565: 153759. doi: 10.1016/j.jnucmat.2022.153759 [59] SU H Z, SUN D Y, JIANG Y F, et al. Investigation on the corrosion behavior of Alloy 800H at various levels of deformation[J]. Corrosion Science, 2023, 212: 110926. doi: 10.1016/j.corsci.2022.110926 [60] YIN J W, RAO Z Y, WU D Y, et al. Interpretable predicting creep rupture life of superalloys: enhanced by domain-specific knowledge[J]. Advanced Science, 2024, 11(11): 2307982. doi: 10.1002/advs.202307982 [61] THÉBAUD L, VILLECHAISE P, CROZET C, et al. Is there an optimal grain size for creep resistance in Ni-based disk superalloys?[J]. Materials Science and Engineering: A, 2018, 716: 274-283. doi: 10.1016/j.msea.2017.12.104 [62] SHANG Z X, SUN T Y, DING J, et al. Gradient nanostructured steel with superior tensile plasticity[J]. Science Advances, 2023, 9(22): eadd9780. doi: 10.1126/sciadv.add9780