高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超临界水冷堆候选包壳材料研究进展与思考

张乐福 黄涛 苏豪展 高阳 郭相龙 沈朝 陈凯

张乐福, 黄涛, 苏豪展, 高阳, 郭相龙, 沈朝, 陈凯. 超临界水冷堆候选包壳材料研究进展与思考[J]. 核动力工程, 2025, 46(1): 183-190. doi: 10.13832/j.jnpe.2025.01.0183
引用本文: 张乐福, 黄涛, 苏豪展, 高阳, 郭相龙, 沈朝, 陈凯. 超临界水冷堆候选包壳材料研究进展与思考[J]. 核动力工程, 2025, 46(1): 183-190. doi: 10.13832/j.jnpe.2025.01.0183
Zhang Lefu, Huang Tao, Su Haozhan, Gao Yang, Guo Xianglong, Shen Zhao, Chen Kai. Progress and Considerations on Candidate Cladding Materials for Supercritical Water-Cooled Reactors[J]. Nuclear Power Engineering, 2025, 46(1): 183-190. doi: 10.13832/j.jnpe.2025.01.0183
Citation: Zhang Lefu, Huang Tao, Su Haozhan, Gao Yang, Guo Xianglong, Shen Zhao, Chen Kai. Progress and Considerations on Candidate Cladding Materials for Supercritical Water-Cooled Reactors[J]. Nuclear Power Engineering, 2025, 46(1): 183-190. doi: 10.13832/j.jnpe.2025.01.0183

超临界水冷堆候选包壳材料研究进展与思考

doi: 10.13832/j.jnpe.2025.01.0183
基金项目: 国家重点研发计划(2018YFE0116200)
详细信息
    作者简介:

    张乐福(1967—),男,研究员,现主要从事反应堆材料与水化学方面的研究,E-mail: lfzhang@sjtu.edu.cn

  • 中图分类号: TL334

Progress and Considerations on Candidate Cladding Materials for Supercritical Water-Cooled Reactors

  • 摘要: 超临界水冷堆(SCWR)具有热效率高、结构简单等技术优势,是第四代核能系统国际论坛推荐的6个堆型之一。 本文首先回顾了SCWR的包壳设计要求和主要性能挑战,然后对经过较多测试的商用候选包壳材料的均匀腐蚀、应力腐蚀及辐照性能进行了回顾。铁素体/马氏体(F/M)钢、奥氏体不锈钢及镍基合金均存在某方面的性能不足。最后,介绍了近年来新兴的SCWR候选包壳材料,包括新型含铝奥氏体不锈钢、氧化物弥散强化钢、梯度材料及其他组织改进技术的研究进展。

     

  • 图  1  商用候选包壳材料腐蚀增重[17-19]

    DO—溶解氧

    Figure  1.  Corrosion Weight Gain of Commercial Candidate Cladding Materials[17-19]

    图  2  商用候选包壳材料的典型腐蚀截面形貌

    BC—背散射电子成像

    Figure  2.  Typical Corrosion Cross-section Morphology of Commercial Candidate Cladding Materials

    图  3  氩气与SCW环境的CGR[30-31]

    K—应力强度因子

    Figure  3.  Comparison of Crack Growth Rates in Pure Argon and SCW Environment[30-31]

    图  4  镍基合金与奥氏体不锈钢CGR与温度的关系[32]

    Q—激活能

    Figure  4.  Relationship between CGR and Temperature of Nickel-based Alloys and Austenitic Stainless Steels[32]

    图  5  温度、合金类别、辐照剂量与SCC的关系[36]

    dpa—原子平均离位

    Figure  5.  Relationship between Temperature, Alloy Composition, Radiation Dose and SCC[36]

    图  6  Al质量百分数与AFAs耐腐蚀性能的关系[49]

    Δw—腐蚀增重;t—时间

    Figure  6.  Relationship between Al Content and Corrosion Resistance of AFAs[49]

    图  7  ODS钢耐腐蚀性能与Cr质量百分数的关系[19]

    Figure  7.  Relationship between Cr Content and Corrosion Resistance of ODS steel[19]

    图  8  表面粗加工提高奥氏体不锈钢800H耐腐蚀性能[23]

    Figure  8.  Effect of Surface State on Corrosion Performance of Austenitic Stainless Steel 800H[23]

    图  9  表面梯度处理工艺平衡包壳材料的综合性能

    Figure  9.  Surface Gradient Treatment to Balance Comprehensive Performance of Candidate Cladding Materials

    表  1  SCWR商用候选包壳材料及其性能比较[8]

    Table  1.   Comparison of SCWR Commercial Candidate Cladding Materials and Their Properties[8]

    合金类型 代表材料 高温力学性能 耐高温腐蚀性能 耐高温蠕变性能 抗辐照/中子性能
    F/M钢(BCC相) T91、P92、P122、HT9、NF616 优秀 较差 一般 优秀
    奥氏体不锈钢(FCC相) 310S、800H、HR3C、304、316L 优秀 一般 较差 一般
    镍基合金(FCC相) 690、625、PE16、 C276、X750 优秀 优秀 一般 较差
    下载: 导出CSV
  • [1] 臧金光,黄彦平. 超临界水冷堆研发进展[J]. 核动力工程,2021, 42(6): 1-4.
    [2] 姚磊,夏榜样,卢迪,等. 超临界水冷堆燃料组件及堆芯方案简化设计研究[J]. 核动力工程,2020, 41(4): 45-49.
    [3] 甯忠豪,王连杰,卢迪,等. 超临界水冷堆CSR150概念设计[J]. 核动力工程,2023, 44(S1): 9-13, doi: 10.13832/j.jnpe.2023.S1.0009.
    [4] 周禹,张宏亮,李满昌,等. 超临界水冷堆堆内构件选材研究[J]. 核动力工程,2013, 34(1): 60-64. doi: 10.3969/j.issn.0258-0926.2013.01.013
    [5] ZHENG H, YU T, QU C T, et al. Basic characteristics and application progress of supercritical water[J]. IOP Conference Series: Earth and Environmental Science, 2020, 555(1): 012036. doi: 10.1088/1755-1315/555/1/012036
    [6] MANDAPAKA K K, CAHYADI R S, YALISOVE S, et al. Corrosion behavior of ceramic-coated ZIRLOTM exposed to supercritical water[J]. Journal of Nuclear Materials, 2018, 498: 495-504. doi: 10.1016/j.jnucmat.2017.10.040
    [7] ZHANG L F, BAO Y C, TANG R. Selection and corrosion evaluation tests of candidate SCWR fuel cladding materials[J]. Nuclear Engineering and Design, 2012, 249: 180-187. doi: 10.1016/j.nucengdes.2011.08.086
    [8] GUZONAS D, EDWARDS M, ZHENG W Y. Assessment of candidate fuel cladding alloys for the Canadian supercritical water-cooled reactor concept[J]. Journal of Nuclear Engineering and Radiation Science, 2016, 2(1): 011016. doi: 10.1115/1.4031502
    [9] WALTERS L, WRIGHT M, GUZONAS D. Irradiation issues and material selection for Canadian SCWR components[J]. Journal of Nuclear Engineering and Radiation Science, 2018, 4(3): 031005. doi: 10.1115/1.4038367
    [10] DONG Z Q, LI M, BEHNAMIAN Y, et al. Effects of Si, Mn on the corrosion behavior of ferritic–martensitic steels in supercritical water (SCW) environments[J]. Corrosion Science, 2020, 166: 108432. doi: 10.1016/j.corsci.2020.108432
    [11] CABET C, DALLE F, GAGANIDZE E, et al. Ferritic-martensitic steels for fission and fusion applications[J]. Journal of Nuclear Materials, 2019, 523: 510-537. doi: 10.1016/j.jnucmat.2019.05.058
    [12] MEIER G H, JUNG K, MU N, et al. Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe–Cr and Fe–Cr–X alloys[J]. Oxidation of Metals, 2010, 74(5-6): 319-340. doi: 10.1007/s11085-010-9215-5
    [13] HUANG T, SU H Z, ZHOU Y H, et al. Comparison of the corrosion behavior of four Fe-Cr-Ni austenitic alloys in supercritical water[J]. Journal of Nuclear Materials, 2025, 603: 155409. doi: 10.1016/j.jnucmat.2024.155409
    [14] ITOH M. Time-dependent power laws in the oxidation and corrosion of metals and alloys[J]. Scientific Reports, 2022, 12(1): 6944. doi: 10.1038/s41598-022-10748-1
    [15] FROMHOLD JR A T. Metal oxidation kinetics from the viewpoint of a physicist: the microscopic motion of charged defects through oxides[J]. Langmuir, 1987, 3(6): 886-896. doi: 10.1021/la00078a004
    [16] CHEN K, ZHANG L F, SHEN Z. Understanding the surface oxide evolution of T91 ferritic-martensitic steel in supercritical water through advanced characterization[J]. Acta Materialia, 2020, 194: 156-167. doi: 10.1016/j.actamat.2020.05.016
    [17] NEZAKAT M, AKHIANI H, PENTTILÄ S, et al. Oxidation behavior of austenitic stainless steel 316L and 310S in air and supercritical water[J]. Journal of Nuclear Engineering and Radiation Science, 2016, 2(2): 021008. doi: 10.1115/1.4031817
    [18] GALAN F, BUDU A. Structural materials candidate for supercritical water-cooled reactor[J]. UPB Scientific Bulletin, Series C: Electrical Engineering, 2021, 83(1): 277-286.
    [19] GUO X L, FAN Y, GAO W H, et al. Corrosion resistance of candidate cladding materials for supercritical water reactor[J]. Annals of Nuclear Energy, 2019, 127: 351-363. doi: 10.1016/j.anucene.2018.12.007
    [20] LEE J H, KASADA R, KIMURA A, et al. Influence of alloy composition and temperature on corrosion behavior of ODS ferritic steels[J]. Journal of Nuclear Materials, 2011, 417(1-3): 1225-1228. doi: 10.1016/j.jnucmat.2010.12.279
    [21] ZHAN Z X, HUANG X, ZHAO Q, et al. Effect of oxygen concentrations on the corrosion behavior of a duplex-phase FeNiCrCuAl high entropy alloy in supercritical water[J]. Journal of Nuclear Materials, 2022, 572: 154046. doi: 10.1016/j.jnucmat.2022.154046
    [22] HUANG X, LI J, AMIRKHIZ B S, et al. Effect of water density on the oxidation behaviour of alloy A-286 at 625 C–a TEM study[J]. Journal of Nuclear Materials, 2015, 467: 758-769. doi: 10.1016/j.jnucmat.2015.10.023
    [23] 黄涛,苏豪展,张乐福,等. 微观组织对800H合金在超临界水中腐蚀行为的影响规律[J]. 核动力工程,2023, 44(5): 251-258, doi: 10.13832/j.jnpe.2023.05.0251.
    [24] WANG J M, ZHOU Y H, WU Y L, et al. Revealing the superior oxidation resistance of alloy 690 in deaerated supercritical water at 600 C through advanced characterization[J]. Materials Characterization, 2024, 210: 113853. doi: 10.1016/j.matchar.2024.113853
    [25] KAMAYA M, HARUNA T. Influence of local stress on initiation behavior of stress corrosion cracking for sensitized 304 stainless steel[J]. Corrosion Science, 2007, 49(8): 3303-3324. doi: 10.1016/j.corsci.2007.01.011
    [26] ZHANG L F, CHEN K, DU D H, et al. Characterizing the effect of creep on stress corrosion cracking of cold worked Alloy 690 in supercritical water environment[J]. Journal of Nuclear Materials, 2017, 492: 32-40. doi: 10.1016/j.jnucmat.2017.05.018
    [27] JE H, KIMURA A. Stress corrosion cracking susceptibility of oxide dispersion strengthened ferritic steel in supercritical pressurized water dissolved with different hydrogen and oxygen contents[J]. Corrosion Science, 2014, 78: 193-199. doi: 10.1016/j.corsci.2013.09.016
    [28] 苏豪展,王鹏,张乐福. 工质压力及蠕变对冷变形310S不锈钢在超临界水环境下的应力腐蚀开裂行为影响研究[J]. 核动力工程,2022, 43(6): 108-116. doi: 10.13832/j.jnpe.2022.06.0108.
    [29] SHEN Z, ZHANG L F, TANG R, et al. The effect of temperature on the SSRT behavior of austenitic stainless steels in SCW[J]. Journal of Nuclear Materials, 2014, 454(1-3): 274-282. doi: 10.1016/j.jnucmat.2014.08.006
    [30] CHEN K, WANG J M, SHEN Z, et al. Comparison of the stress corrosion cracking growth behavior of cold worked Alloy 690 in subcritical and supercritical water[J]. Journal of Nuclear Materials, 2019, 520: 235-244. doi: 10.1016/j.jnucmat.2019.04.017
    [31] SU H Z, HUANG T, WANG J M, et al. The cracking growth behavior of a sensitized Alloy 800H in supercritical water[J]. Journal of Nuclear Materials, 2023, 583: 154509. doi: 10.1016/j.jnucmat.2023.154509
    [32] WAS G S, AMPORNRAT P, GUPTA G, et al. Corrosion and stress corrosion cracking in supercritical water[J]. Journal of Nuclear Materials, 2007, 371(1-3): 176-201. doi: 10.1016/j.jnucmat.2007.05.017
    [33] NOVOTNY R, HÄHNER P, SIEGL J, et al. Stress corrosion cracking susceptibility of austenitic stainless steels in supercritical water conditions[J]. Journal of Nuclear Materials, 2011, 409(2): 117-123. doi: 10.1016/j.jnucmat.2010.09.018
    [34] CHEN K, WANG J M, DU D H, et al. Stress corrosion crack growth behavior of type 310S stainless steel in supercritical water[J]. Corrosion, 2018, 74(7): 776-787. doi: 10.5006/2775
    [35] 郑中成,郭立平,唐睿. 超临界水冷堆燃料包壳材料的辐照损伤研究进展[J]. 原子核物理评论,2017, 34(2): 211-218.
    [36] ZHOU R S, WEST E A, JIAO Z J, et al. Irradiation-assisted stress corrosion cracking of austenitic alloys in supercritical water[J]. Journal of Nuclear Materials, 2009, 395(1-3): 11-22. doi: 10.1016/j.jnucmat.2009.09.010
    [37] TEYSSEYRE S, JIAO Z, WEST E, et al. Effect of irradiation on stress corrosion cracking in supercritical water[J]. Journal of Nuclear Materials, 2007, 371(1-3): 107-117. doi: 10.1016/j.jnucmat.2007.05.008
    [38] WANG M, SUN H Y, ZHENG W Y, et al. Creep behavior of an alumina-forming austenitic steel with simple alloy design[J]. Materials Today Communications, 2020, 25: 101303. doi: 10.1016/j.mtcomm.2020.101303
    [39] REN J, YU L M, LIU C X, et al. Creep properties, microstructural evolution, and fracture mechanism of an Al added high Cr ODS steel during creep deformation at 600 C[J]. Journal of Nuclear Materials, 2022, 558: 153376. doi: 10.1016/j.jnucmat.2021.153376
    [40] WEN H Y, ZHAO B B, ZHOU J, et al. Early segregation and precipitation at triple junction in an alumina-forming austenitic steel[J]. Materials Letters, 2021, 283: 128802. doi: 10.1016/j.matlet.2020.128802
    [41] JOZAGHI T, WANG C, ARROYAVE R, et al. Design of alumina-forming austenitic stainless steel using genetic algorithms[J]. Materials & Design, 2020, 186: 108198. doi: 10.1016/j.matdes.2019.108198
    [42] GAO Y, SUN D Y, LIU Z, et al. Oxide scale growth behavior of alumina-forming austenitic stainless steel exposed to supercritical water[J]. Corrosion Science, 2024, 227: 111681. doi: 10.1016/j.corsci.2023.111681
    [43] GAO Y, SUN D Y, LIU Z, et al. Anomalous oxidation rate-temperature dependence of alumina-forming austenitic stainless steels exposed to 500–600 °C supercritical water[J]. Corrosion Science, 2024, 231: 111936. doi: 10.1016/j.corsci.2024.111936
    [44] SUN H Y, YANG H J, WANG M, et al. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water[J]. Journal of Nuclear Materials, 2017, 484: 339-346. doi: 10.1016/j.jnucmat.2016.10.039
    [45] LIU L, FAN C L, SUN H Y, et al. Research progress of alumina-forming austenitic stainless steels: a review[J]. Materials, 2022, 15(10): 3515. doi: 10.3390/ma15103515
    [46] SHEN L, WU B J, ZHAO K, et al. Reason for negative effect of Nb addition on oxidation resistance of alumina-forming austenitic stainless steel at 1323 K[J]. Corrosion Science, 2021, 191: 109754. doi: 10.1016/j.corsci.2021.109754
    [47] NIE S H, CHEN Y, REN X, et al. Corrosion of alumina-forming austenitic steel Fe–20Ni–14Cr–3Al–0.6Nb–0.1Ti in supercritical water[J]. Journal of Nuclear Materials, 2010, 399(2-3): 231-235. doi: 10.1016/j.jnucmat.2010.01.025
    [48] HU B, TROTTER G, WANG Z W, et al. Effect of boron and carbon addition on microstructure and mechanical properties of the aged gamma-prime strengthened alumina-forming austenitic alloys[J]. Intermetallics, 2017, 90: 36-49. doi: 10.1016/j.intermet.2017.06.011
    [49] GAO Y, SU R R, LIU Z, et al. High-resolution characterization reveals the role of Al content in the evolution of oxide scales formed on alumina-forming alloy exposed to supercritical water[J]. Corrosion Science, 2024, 231: 111968. doi: 10.1016/j.corsci.2024.111968
    [50] UKAI S, FUJIWARA M. Perspective of ODS alloys application in nuclear environments[J]. Journal of Nuclear Materials, 2002, 307-311: 749-757. doi: 10.1016/S0022-3115(02)01043-7
    [51] EISELT C C, SCHENDZIELORZ H, SEUBERT A, et al. ODS-materials for high temperature applications in advanced nuclear systems[J]. Nuclear Materials and Energy, 2016, 9: 22-28. doi: 10.1016/j.nme.2016.08.017
    [52] CAO S G, ZHOU Z J. Microstructure and mechanical properties of an ODS ferritic steel with very low Cr content[J]. Journal of Nuclear Materials, 2021, 551: 152971. doi: 10.1016/j.jnucmat.2021.152971
    [53] ROGOZHKIN S, BOGACHEV A, KORCHUGANOVA O, et al. Nanostructure evolution in ODS steels under ion irradiation[J]. Nuclear Materials and Energy, 2016, 9: 66-74. doi: 10.1016/j.nme.2016.06.011
    [54] SONG P, MORRALL D, ZHANG Z X, et al. Radiation response of ODS ferritic steels with different oxide particles under ion-irradiation at 550 °C[J]. Journal of Nuclear Materials, 2018, 502: 76-85. doi: 10.1016/j.jnucmat.2018.02.007
    [55] GAO W H, GUO X L, SHEN Z, et al. Corrosion behavior of oxide dispersion strengthened ferritic steels in supercritical water[J]. Journal of Nuclear Materials, 2017, 486: 1-10. doi: 10.1016/j.jnucmat.2017.01.014
    [56] XU S, LONG F, PERSAUD S Y, et al. Oxidation behavior of 9Cr-4.5Al ODS steel in 600 °C supercritical water and the effect of pre-oxidation[J]. Corrosion Science, 2020, 165: 108380. doi: 10.1016/j.corsci.2019.108380
    [57] SHEN Z, CHEN K, GUO X L, et al. A study on the corrosion and stress corrosion cracking susceptibility of 310-ODS steel in supercritical water[J]. Journal of Nuclear Materials, 2019, 514: 56-65. doi: 10.1016/j.jnucmat.2018.11.016
    [58] EDWARDS M, ROUSSEAU S, NOVOTNÝ R, et al. The reproducibility of corrosion testing in supercritical water—results of a second international interlaboratory comparison exercise[J]. Journal of Nuclear Materials, 2022, 565: 153759. doi: 10.1016/j.jnucmat.2022.153759
    [59] SU H Z, SUN D Y, JIANG Y F, et al. Investigation on the corrosion behavior of Alloy 800H at various levels of deformation[J]. Corrosion Science, 2023, 212: 110926. doi: 10.1016/j.corsci.2022.110926
    [60] YIN J W, RAO Z Y, WU D Y, et al. Interpretable predicting creep rupture life of superalloys: enhanced by domain-specific knowledge[J]. Advanced Science, 2024, 11(11): 2307982. doi: 10.1002/advs.202307982
    [61] THÉBAUD L, VILLECHAISE P, CROZET C, et al. Is there an optimal grain size for creep resistance in Ni-based disk superalloys?[J]. Materials Science and Engineering: A, 2018, 716: 274-283. doi: 10.1016/j.msea.2017.12.104
    [62] SHANG Z X, SUN T Y, DING J, et al. Gradient nanostructured steel with superior tensile plasticity[J]. Science Advances, 2023, 9(22): eadd9780. doi: 10.1126/sciadv.add9780
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-16
  • 修回日期:  2024-12-11
  • 刊出日期:  2025-02-15

目录

    /

    返回文章
    返回