高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

安全壳钢衬里在模拟混凝土孔溶液中的耐腐蚀性研究

郭俊营 陈圣刚 李忠诚 刘金龙 周传波

郭俊营, 陈圣刚, 李忠诚, 刘金龙, 周传波. 安全壳钢衬里在模拟混凝土孔溶液中的耐腐蚀性研究[J]. 核动力工程, 2025, 46(1): 199-208. doi: 10.13832/j.jnpe.2025.01.0199
引用本文: 郭俊营, 陈圣刚, 李忠诚, 刘金龙, 周传波. 安全壳钢衬里在模拟混凝土孔溶液中的耐腐蚀性研究[J]. 核动力工程, 2025, 46(1): 199-208. doi: 10.13832/j.jnpe.2025.01.0199
Guo Junying, Chen Shenggang, Li Zhongcheng, Liu Jinlong, Zhou Chuanbo. Reasearch on Corrosion Resistance of Containment Steel Liner in Simulated Concrete Pore Solution[J]. Nuclear Power Engineering, 2025, 46(1): 199-208. doi: 10.13832/j.jnpe.2025.01.0199
Citation: Guo Junying, Chen Shenggang, Li Zhongcheng, Liu Jinlong, Zhou Chuanbo. Reasearch on Corrosion Resistance of Containment Steel Liner in Simulated Concrete Pore Solution[J]. Nuclear Power Engineering, 2025, 46(1): 199-208. doi: 10.13832/j.jnpe.2025.01.0199

安全壳钢衬里在模拟混凝土孔溶液中的耐腐蚀性研究

doi: 10.13832/j.jnpe.2025.01.0199
基金项目: 十三五国家重点研发计划项目(2019YBF1900903)
详细信息
    作者简介:

    郭俊营(1969—),教授级高工,现主要从事核电站结构设计方面研究,E-mail: 13925260506@163.com

    通讯作者:

    陈圣刚,E-mail: csg.1988@hotmail.com

  • 中图分类号: TL45;TU377

Reasearch on Corrosion Resistance of Containment Steel Liner in Simulated Concrete Pore Solution

  • 摘要: 针对核电厂安全壳钢衬里专用P265GH低合金钢(CSL),采用电化学和X射线光电子能谱(XPS)分析方法探究其在饱和Ca(OH)2溶液中的钝化和破钝效应,并与Q235B低碳钢(Q235B)和304不锈钢(304SS)耐腐蚀性能进行对比分析。结果表明:与Q235B和304SS相比,CSL在模拟混凝土孔溶液中钝化效率更高,但钝化膜中Fe2+/Fe3+比值较低导致其耐蚀性较差,CSL的临界氯离子浓度(0.16~0.2 mol/L)远小于Q235B(0.3 mol/L);氯离子的破钝效应主要影响试件表面的双电层结构,导致其有效电容增大,电荷转移电阻急剧下降;304SS的钝化膜为Fe和Cr的氧化物和羟基氧化物,具有更高的耐腐蚀性。

     

  • 图  1  材料金相组织

    Figure  1.  Microstructure of the Tested Materials

    图  2  试件制作

    Figure  2.  Manufacture of Specimens

    图  3  钝化阶段开路电位变化

    Figure  3.  OCP in Passivation Stage

    图  4  钝化阶段极化电阻变化

    Figure  4.  Polarization Resistance in Passivation Stage

    图  5  不同钝化时间下试件CSL、Q235B和304SS的EIS曲线

    Zre—阻抗实部;Zim—阻抗虚部;φ—相位角

    Figure  5.  EIS Curves of CSL, Q235B and 304SS in Different Passivation Time

    图  6  等效电路图

    $ {R_{\text{s}}} $—模拟混凝土孔溶液电阻;常相位角元件CPEf 和CPEdl—表征钢板表面钝化膜和双电层特征;W—Warburg阻抗;RfRct—钝化膜电阻、电荷转移电阻

    Figure  6.  Equivalent Circuit Diagram

    图  7  钝化10 d后3种试件XPS 拟合图谱

    Figure  7.  XPS Peak Fitting of the Three Tested Specimens after 10 Days' Passivation

    图  8  腐蚀电位及极化电阻随氯离子浓度变化曲线

    Figure  8.  Curves of Corrosion Potential and Polarization Resistance with Chloride Ion Concentration

    图  9  不同氯离子浓度条件下试件EIS曲线

    Figure  9.  EIS Curves of Specimens under Different Chloride Ion Concentrations

    图  10  CSL、Q235B和304SS在碱性溶液钝化和破钝机理示意图

    Figure  10.  Passivation and Depassivtion Mechanisms of CSL, Q235B and 304SS in Alkaline Solutions

    表  1  不同钢材的化学成分

    Table  1.   Chemical Composition of Different Steels

    试件 化学成分/(质量百分数,%)
    Fe C Si Mn P S Cr Ni N Cu Alt Nb V Ti Mo
    CSL 余量 0.11 0.21 0.84 0.013 0.002 0.04 0.14 0.003 0.02 0.032 0.003 0.002 0.002 0.01
    Q235B 余量 0.15 0.12 0.36 0.024 0.009
    304SS 余量 0.034 0.45 1.42 0.018 0.003 18.1 8.13 0.054
    下载: 导出CSV

    表  2  氯离子浓度增长制度

    Table  2.   Schedule of the Increase of Chloride Concentration

    阶段 时间/d 浓度梯度/
    (mol·L−1
    初始浓度/
    (mol·L−1
    终止浓度/
    (mol·L−1
    阶段一 6 0.01 0 0.06
    阶段二 7 0.02 0.06 0.2
    阶段三 6 0.05 0.2 0.5
    阶段四 3 0.5 0.5 2.0
    下载: 导出CSV

    表  3  钝化阶段等效电路拟合参数值

    Table  3.   EIS Fitting Values of Parameters of Equivalent Circuit in Passivation Stage

    试件 钝化时间/h Rs/(Ω·cm2 CPEf Rf/(kΩ·cm2) CPEdl Rct/(kΩ·cm2)
    Qf /
    (10−7 $ {\text{Ω}}^{{-1}}\cdot {\text{cm}}^{{-2}}\cdot {\text{s}}^{{n}_{\text{f}}}) $
    nf $C_{{\text{CPE}}_{\mathrm{f}}} $/
    ($ {\text{μF}} \cdot {\text{c}}{{\text{m}}^{ - 2}} $)
    Qdl/
    (10−5 $ {{{\Omega }}^{{{ - 1}}}} \cdot {\text{c}}{{\text{m}}^{{{ - 2}}}} \cdot {{\text{s}}^{{n_{{\text{dl}}}}}} $)
    ndl $C_{{\text{CPE}}_{\mathrm{dl}}} $/
    ($ \mu{\text{F}} \cdot {\text{c}}{{\text{m}}^{ - 2}} $)
    CSL 8 14.95 1.48 1.00 1.48 11.37 8.60 0.90 30.81 1760.45
    120 19.14 9.03 1.00 9.03 5.02 8.91 0.93 19.95 4469.18
    240 16.93 2.68 1.00 2.68 9.09 9.00 0.95 16.32 3842.10
    Q235B 8 17.35 4.08 1.00 4.08 7.84 7.71 0.91 22.89 926.93
    120 18.21 5.41 1.00 5.41 7.37 6.64 0.92 16.98 5269.28
    240 14.65 2.00 1.00 2.00 1.13 6.72 0.95 10.75 4252.95
    304SS 8 26.50 9.29 1.00 9.29 52.70 10.86 0.79 9.32 2152.51
    120 26.16 10.59 1.00 10.59 78.84 11.09 0.81 10.68 3623.63
    240 26.16 13.93 1.00 13.93 52.70 10.03 0.75 8.08 4726.13
      表中数据均为每组3个试件的平均值
    下载: 导出CSV

    表  4  Fe2+/Fe3+、FeOX/FeM 比值

    Table  4.   Values of Fe2+/Fe3+ and FeOX/FeM

    试件Fe2+/Fe3+FeOX/FeM
    CSL0.1966.56
    Q235B0.2149.01
    304SS0.611.89
    下载: 导出CSV

    表  5  腐蚀阶段等效电路拟合参数值

    Table  5.   EIS Fitting Values of Parameters of Equivalent Circuit in Corrosion Stage

    试件 ${C_{{\text{C}}{{\text{l}}^{{ - }}}}}$/(mol·L−1) Rs/
    (Ω·cm2
    CPEf Rf /
    (KΩ·cm2
    CPEdl Rct/
    (kΩ·cm2
    Qf/
    $ (10^{-7}\Omega^{-1}\cdot\text{c}\text{m}^{-2}\cdot\text{s}^{n_{\mathrm{f}}} $)
    nf $C_{{\text{CPE}}_{\mathrm{f}}} $/
    $ (\text{μF}\cdot\text{c}\text{m}^{-2}) $
    Qdl /
    $ \left(10^{-5}\Omega^{-1}\cdot\text{c}\text{m}^{-2}\cdot\text{s}^{n_{\mathrm{dl}}}\right) $
    ndl $C_{{\text{CPE}}_{\mathrm{dl}}} $/
    $ (\text{μF}\cdot\text{c}\text{m}^{-2}) $
    CSL 0.1 18.71 18.2 1.00 18.2 3.15 10.00 0.94 19.37 3525.10
    0.2 16.62 7.14 1.00 7.14 4.47 12.61 0.93 28.66 135.63
    0.5 13.36 8.70 1.00 8.70 3.06 19.22 0.87 98.00 36.52
    Q235B 0.3 14.81 12.00 1.00 12.00 3.09 7.92 0.95 13.48 3779.30
    0.4 22.31 0.92 1.00 0.92 18.10 22.60 0.87 92.04 0.55
    0.5 12.04 6.85 1.00 6.85 3.47 30.10 0.84 181.41 0.47
    304SS 0.1 24.62 12.63 1.00 12.63 118.17 11.24 0.73 12.39 4848.30
    0.4 28.18 9.47 1.00 9.47 5.19 15.09 0.70 5.07 5577.30
    0.5 17.66 7.79 1.00 7.79 4.95 17.73 0.72 6.88 5681.30
      表中数据均为每组3个试件的平均值;${C_{{\text{C}}{{\text{l}}^{{ - }}}}}$为氯离子浓度
    下载: 导出CSV
  • [1] BERTOLINI L, ELSENER B, PEDEFERRI P, et al. Corrosion of steel in concrete: prevention, diagnosis, repair[M]. 2nd ed. Berlin: Wiley-VCH Verlag GmBH & Co. KGaA, 2013: 5-6.

    BERTOLINI L,ELSENER B,PEDEFERRI P,et al. Corrosion of steel in concrete: prevention,diagnosis,repair[M]. 2nd ed. Berlin: Wiley-VCH Verlag GmBH & Co. KGaA,2013:5-6.
    [2] GUO Q Q, WANG S X, CHEN S G, et al. Structural safety reliability of concrete buildings of HTR-PM in accidental double-ended break of hot gas ducts[J]. Nuclear Engineering and Technology, 2020, 52(5): 1051-1065. doi: 10.1016/j.net.2019.10.015
    [3] ERLER B A, WEYERS R E, SAGUES A, et al. Nuclear containment steel liner corrosion workshop: final summary and recommendation report: SAND2010-8718; TRN: US1201117[R]. Albuquerque: Sandia National Laboratories, 2011.
    [4] DUNN D S, PULVIRENTI A L, HISER M A. Containment liner corrosion operating experience summary, technical letter report—revision 1:report of the United States Nuclear Regulatory Commission[R]. Rockville: U. S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research, 2011.
    [5] PAEK Y, KIM S, YOON E, et al. Introduction of containment liner plate (CLP) corrosion[C]//Transactions of the Korean Nuclear Society Spring Meeting. Jeju:Korean Nuclear Society,2018.
    [6] CHOI W J, BAHN C B. Evaluation of corrosion behavior of carbon steel for containment liner plate according to environmental factors[C]//Transactions of the Korean Nuclear Society Spring Meeting. Jeju:Korean Nuclear Society,2019.
    [7] 廖开星,吴剑剑,李毅,等. 核电厂安全壳钢衬里的腐蚀防护与控制初探[J]. 腐蚀与防护,2019, 40(1): 61-65. doi: 10.11973/fsyfh-201901013
    [8] 郭俊营,李忠诚,李文旭,等. 美国在役核电厂安全壳钢衬里锈蚀及修复技术研究进展[J]. 建筑结构,2022, 52(2): 127-134.
    [9] 曹光明,汤军舰,林飞,等. 典型氧化铁皮结构电化学腐蚀行为[J]. 中南大学学报: 自然科学版,2018, 49(6): 1366-1372.
    [10] 谢春洋,孔德军. 激光淬火对Cr12MoV钢渗硼层盐雾腐蚀和电化学腐蚀的影响[J]. 中南大学学报: 自然科学版,2016, 47(8): 2614-2620.
    [11] 陈杰,刘海霞,刘光磊,等. NaCl溶液腐蚀后304不锈钢的超声空蚀特征[J]. 中南大学学报: 自然科学版,2021, 52(5): 1436-1445.
    [12] 施锦杰,孙伟,耿国庆. 模拟混凝土孔溶液对钢筋钝化的影响[J]. 建筑材料学报,2011, 14(4): 452-458. doi: 10.3969/j.issn.1007-9629.2011.04.004
    [13] ABD EL HALEEM S M, ABD EL AAL E E, ABD EL WANEES S, et al. Environmental factors affecting the corrosion behaviour of reinforcing steel: I. the early stage of passive film formation in Ca(OH)2 solutions[J]. Corrosion Science, 2010, 52(12): 3875-3882. doi: 10.1016/j.corsci.2010.07.035
    [14] 苑旭雯. 模拟混凝土孔隙液中不锈钢自然钝化及脱钝行为研究[D]. 合肥: 中国科学技术大学,2021.
    [15] LIU M, CHENG X Q, LI X G, et al. Corrosion behavior of Cr modified HRB400 steel rebar in simulated concrete pore solution[J]. Construction and Building Materials, 2015, 93: 884-890. doi: 10.1016/j.conbuildmat.2015.05.073
    [16] DE ROJAS R R. New developments in steel reinforcement protection from corrosion[M]. Massachusetts: Massachusetts Institute of Technology, 2001: 29-31.

    DE ROJAS R R. New developments in steel reinforcement protection from corrosion[M]. Massachusetts: Massachusetts Institute of Technology,2001:29-31.
    [17] SHI J J, MING J, WU M. Electrochemical behavior and corrosion products of Cr-modified reinforcing steels in saturated Ca(OH)2 solution with chlorides[J]. Cement and Concrete Composites, 2020, 110: 103587. doi: 10.1016/j.cemconcomp.2020.103587
    [18] SHI J J, MING J, SUN W. Electrochemical behaviour of a novel alloy steel in alkali-activated slag mortars[J]. Cement and Concrete Composites, 2018, 92: 110-124. doi: 10.1016/j.cemconcomp.2018.06.004
    [19] 明静,施锦杰,孙伟. 混凝土中低合金钢筋腐蚀产物的微结构分析[J]. 建筑材料学报,2020, 23(2): 347-353.
    [20] SERDAR M, MERAL C, KUNZ M, et al. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete[J]. Cement and Concrete Research, 2015, 71: 93-105. doi: 10.1016/j.cemconres.2015.02.004
    [21] SUN J L, TANG H J, WANG C L, et al. Effects of alloying elements and microstructure on stainless steel corrosion: a review[J]. Steel Research International, 2022, 93(5): 2100450. doi: 10.1002/srin.202100450
    [22] YUAN X W, WANG X, YANG H Y. Effects of pH and Cl content on degradation process of pre-passivated stainless steels in an alkaline solution[J]. Journal of the Electrochemical Society, 2022, 169(3): 031506. doi: 10.1149/1945-7111/ac595b
    [23] CAO Y, GEHLEN C, ANGST U, et al. Critical chloride content in reinforced concrete—an updated review considering Chinese experience[J]. Cement and Concrete Research, 2019, 117: 58-68. doi: 10.1016/j.cemconres.2018.11.020
    [24] The British Standards Institution. Flat products made of steels for pressure purposes-parts 2: non-alloy and alloy steels with specified elevated temperature properties: BS EN 10028-2: 2009[S]. 2017:6-9.
    [25] 李文旭. 核电厂安全壳钢衬里锈蚀后力学性能的试验研究[D]. 大连: 大连理工大学,2021.
    [26] 赵起越,范益,范恩点,等. 低合金结构钢腐蚀的影响因素及其耐蚀性判据[J]. 工程科学学报,2021, 43(2): 255-262.
    [27] 卢金马,黄俊铭,余波,等. 电极工作面积和孔隙液pH值对钢筋脱钝临界氯离子浓度的影响[J]. 建筑材料学报,2021, 24(5): 994-1001. doi: 10.3969/j.issn.1007-9629.2021.05.013
    [28] SHI J J, WANG D Q, MING J, et al. Long-term electrochemical behavior of low-alloy steel in simulated concrete pore solution with chlorides[J]. Journal of Materials in Civil Engineering, 2018, 30(4): 04018042. doi: 10.1061/(ASCE)MT.1943-5533.0002194
    [29] SHI J J, SUN W, JIANG J Y, et al. Influence of chloride concentration and pre-passivation on the pitting corrosion resistance of low-alloy reinforcing steel in simulated concrete pore solution[J]. Construction and Building Materials, 2016, 111: 805-813. doi: 10.1016/j.conbuildmat.2016.02.107
    [30] LIU Y Q, SHI J J. Corrosion resistance of carbon steel in alkaline concrete pore solutions containing phytate and chloride ions[J]. Corrosion Science, 2022, 205: 110451. doi: 10.1016/j.corsci.2022.110451
    [31] WANG D Q, MING J, SHI J J. Enhanced corrosion resistance of rebar in carbonated concrete pore solutions by Na2HPO4 and benzotriazole[J]. Corrosion Science, 2020, 174: 108830. doi: 10.1016/j.corsci.2020.108830
    [32] YAO N, ZHOU X C, LIU Y Q, et al. Synergistic effect of red mud and fly ash on passivation and corrosion resistance of 304 stainless steel in alkaline concrete pore solutions[J]. Cement and Concrete Composites, 2022, 132: 104637. doi: 10.1016/j.cemconcomp.2022.104637
    [33] LIU Y Q, ZHOU X C, GUAN X D, et al. Synergistic inhibition mechanism of phosphate and phytic acid on carbon steel in carbonated concrete pore solutions containing chlorides[J]. Corrosion Science, 2022, 208: 110637. doi: 10.1016/j.corsci.2022.110637
    [34] LUO H, DONG C F, LI X G, et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride[J]. Electrochimica Acta, 2012, 64: 211-220. doi: 10.1016/j.electacta.2012.01.025
    [35] BURAK GUNAY H, GHODS P, BURKAN ISGOR O, et al. Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS[J]. Applied Surface Science, 2013, 274: 195-202. doi: 10.1016/j.apsusc.2013.03.014
    [36] OMRAN M, FABRITIUS T, ELMAHDY A M, et al. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore[J]. Applied Surface Science, 2015, 345: 127-140. doi: 10.1016/j.apsusc.2015.03.209
    [37] GHODS P, BURKAN ISGOR O, BENSEBAA F, et al. Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution[J]. Corrosion Science, 2012, 58: 159-167. doi: 10.1016/j.corsci.2012.01.019
    [38] ANGST U, ELSENER B, LARSEN C K, et al. Critical chloride content in reinforced concrete—a review[J]. Cement and Concrete Research, 2009, 39(12): 1122-1138. doi: 10.1016/j.cemconres.2009.08.006
    [39] ANDRADE C, ALONSO C. Corrosion rate monitoring in the laboratory and on-site[J]. Construction and Building Materials, 1996, 10(5): 315-328. doi: 10.1016/0950-0618(95)00044-5
    [40] KOUŘIL M, NOVÁK P, BOJKO M. Threshold chloride concentration for stainless steels activation in concrete pore solutions[J]. Cement and Concrete Research, 2010, 40(3): 431-436. doi: 10.1016/j.cemconres.2009.11.005
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  4
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-25
  • 修回日期:  2024-05-04
  • 刊出日期:  2025-02-15

目录

    /

    返回文章
    返回