Structure Optimization of Bottom Nozzle for Flow Resistance- Filtration-Bearing Performance
-
摘要: 为实现燃料组件下管座的冷却剂压降、异物过滤和结构承载等多种性能的综合提升,本研究提出了一种多目标优化方法。该方法以冷却剂压降和异物过滤效率为目标,优化下管座的关键尺寸参数,并以六边形下管座为例开展了尺寸优化研究。结果表明,采用该方法下管座的冷却剂压降和异物过滤的优化幅度分别达到12.5%和6.3%,并且优化后的最大应力同步降低14.0%,性能提升效果显著。本研究建立的多目标优化方法具有通用性,能够适用于其他类型下管座的结构优化以提升其综合性能。Abstract: To improve the comprehensive performance of the bottom nozzle, including coolant pressure drop, debris filtration, and load-bearing of structure, a multi-objective optimization approach was proposed to optimize the key dimensional parameters of the bottom nozzle with the goal of coolant pressure drop and debris filtration efficiency. Based on the approach, size optimization was conducted using the hexagonal bottom nozzle as an example. The results showed that the pressure drop and filtration efficiency were optimized by 12.5% and 6.3%, respectively. Meanwhile, the maximum stress was reduced by 14.0%, confirming a significant enhancement of the comprehensive performance. Furthermore, the multi-objective optimization approach is universal for the structural optimization of various types of bottom nozzle to improve its comprehensive performance.
-
表 1 设计尺寸初始值与变化范围
Table 1. Initial Values and Variation Range of the Design Parameters
尺寸 L1/mm L2/mm D/mm H1/mm H2/mm 初始值 5.0 5.0 3.0 10.0 110.0 变化范围 4.5~5.5 4.5~5.5 2.7~3.3 9.0~11.0 100.0~110.0 表 2 基于DOE方法的设计尺寸样本点
Table 2. Sample Points of Design Parameters Based on DOE Method
序号 L1/mm L2/mm D/mm H1/mm H2/mm 1 4.92 4.94 2.83 10.81 107.50 2 5.02 5.41 3.12 10.31 105.51 3 4.76 5.38 3.00 10.08 104.49 4 4.64 4.61 2.89 10.60 101.47 5 4.86 5.26 2.93 10.53 101.97 6 5.47 5.46 3.23 9.51 103.70 7 5.19 4.89 2.96 9.23 109.51 8 4.98 4.77 3.18 9.43 109.06 9 5.24 5.09 3.10 10.44 106.06 10 5.15 5.00 2.98 9.87 102.95 11 5.28 4.80 2.87 10.20 103.25 12 5.41 5.22 3.07 9.97 104.59 13 4.74 4.70 2.80 9.71 102.34 14 4.57 4.69 2.78 10.93 100.46 15 5.10 4.52 3.04 10.18 108.86 16 4.83 4.58 2.74 9.19 107.73 17 5. 40 5.20 3.16 9.70 106.79 18 4.53 5.02 2.70 9.38 108.00 19 4.67 5.32 3.27 9.03 100.86 20 5.34 5.14 3.24 10.73 105.37 表 3 优化前后尺寸对比
Table 3. Comparison between Initial and Optimized Sizes
尺寸 L1/mm L2/mm D/mm H1/mm H2/mm 优化前 5.00 5.00 3.00 10.00 110.00 优化后 4.65 5.00 2.93 9.69 105.14 表 4 优化前后性能对比
Table 4. Comparison between Initial and Optimized Performances
压降/Pa 不同异物的过滤效率/% 最大应力/
MPaΦ1.0 mm×
8 mmΦ1.0 mm×
16 mmΦ1.5 mm×
8 mm初始值 3497.4 90 93 92 130.66 优化值 3059.7 97 100 97 112.43 改善量/% 12.5 7 7 5 14.0 -
[1] 陈宝山,刘承新. 轻水堆燃料元件[M]. 北京: 化学工业出版社,2007: 385. [2] 焦拥军,肖忠,李云,等. “华龙一号”燃料组件设计研究及验证[J]. 中国核电,2017, 10(4): 478-482, 488. [3] 粟敏,陈平,邝临源,等. CF3燃料组件下管座力学性能研究[J]. 核动力工程,2018, 39(S1): 62-65. [4] 谷明非,李垣明,茹俊,等. 基于Inventor的燃料组件下管座虚拟设计[J]. 核动力工程,2015, 36(S2): 82-83. [5] 冯琳娜,陈杰,粟敏,等. CF3燃料组件下管座水力学性能研究[J]. 核动力工程,2022, 43(S2): 208-212. [6] DUAN M H, ZHAO M F. A numerical research of the resistance characteristics of the bottom nozzle in the annular fuel assembly[C]//Proceedings of 2018 26th International Conference on Nuclear Engineering. London: Nuclear Engineering Division, 2018. [7] JUNG M S, KIM K T. Debris filtering efficiency and its effect on long term cooling capability[J]. Nuclear Engineering and Design, 2013, 261: 1-9. doi: 10.1016/j.nucengdes.2013.03.039 [8] PARK N G, PARK J K, KIM J I, et al. PWR fuel debris filtering performance measurement method and its application[J]. Nuclear Engineering and Design, 2015, 281: 96-102. doi: 10.1016/j.nucengdes.2014.11.024 [9] PARK J K, LEE S K, KIM J H. Development of an evaluation method for nuclear fuel debris-filtering performance[J]. Nuclear Engineering and Technology, 2018, 50(5): 738-744. doi: 10.1016/j.net.2018.03.011 [10] DENG S, REN Q Y, ZHANG J, et al. Numerical simulation analysis of debris filtration in the bottom nozzle[J]. Annals of Nuclear Energy, 2024, 198: 110301. doi: 10.1016/j.anucene.2023.110301 [11] 何晗瑾. 基于代理模型的多目标方法研究及应用[D]. 成都:电子科技大学,2022. [12] 杨燕昭,汪思航,陈浮,等. 基于Kriging模型的CW型原表面换热单元体优化设计[J]. 工程热物理学报,2022, 43(12): 3244-3251. [13] OLSSON A, SANDBERG G, DAHLBLOM O. On Latin hypercube sampling for structural reliability analysis[J]. Structural Safety, 2003, 25(1): 47-68. [14] PENG W, ZHANG J, SHI M, et al. Low-frequency sound insulation optimisation design of membrane-type acoustic metamaterials based on Kriging surrogate model[J]. Materials & Design, 2023, 225: 111491. [15] WANG D Y, CHEN W R, ZHU Y et al. An improved lump mass stick model of a nuclear power plant based on the Kriging surrogate model[J]. Nuclear Engineering and Design, 2024, 423: 113182. doi: 10.1016/j.nucengdes.2024.113182