Study on Monte Carlo Particle Transport Method and Application
-
摘要: 蒙特卡罗(MC)粒子输运方法应用概率论随机理论与数理统计知识开发相应程序,并借助计算机工具帮助核领域解决各种粒子输运物理问题。经过70多年的发展,MC粒子输运方法理论和算法已经逐步成熟,先后诞生了多代多个程序软件,在核辐射屏蔽、核反应堆堆芯临界安全分析、核探测及核医学等传统领域广泛应用。本文从MC粒子输运的理论基础介绍开始,给出了MC方法求解积分形式中子输运方程的中子通量密度公式,以及中子通量密度响应量的计算方法,同时概述了求解输运方程的确定论方法分类,介绍了MC粒子输运方法发展历程和计算应用经历的阶段,以及国内外重要的MC粒子输运分析软件,还有近期国际上采用图形处理单元(GPU)技术发展MC粒子输运软件的方向和进展。同时对自主研制的MC粒子输运软件JMCT的功能和特色进行系统性介绍。
-
关键词:
- 蒙特卡罗(MC)方法 /
- 粒子输运 /
- 并行计算 /
- JMCT /
- 人工智能
Abstract: Monte Carlo (MC) particle transport methodology incorporates stochastic principles derived from probability theory and mathematical statistics to establish computational frameworks. This approach facilitates the numerical resolution of complex particle transport phenomena in nuclear systems. Over the course of seven decades of development, MC particle transport theory and algorithms have reached a high level of technical maturity. This has resulted in the development of several specialized software packages, which are widely applied in fields such as nuclear radiation shielding, reactor core criticality safety analysis, nuclear detection, and radiation medicine. This study commences by establishing the theoretical framework underlying MC particle transport methodologies. Through rigorous mathematical derivation, we present the neutron flux density formulation developed via MC simulations for addressing integral-form neutron transport equations, coupled with analytical frameworks for determining associated response parameters. It also outlines the classification of deterministic approaches for solving transport equations. The study reviews the historical development and computational application of MC particle transport methods, while summarizing significant software developed domestically and internationally. Furthermore, it examines recent advancements in utilizing graphics processing unit (GPU) technology to develop MC particle transport software, highlighting current research directions and progress in this field. This paper provides a comprehensive review of recent advancements in MC particle transport methodologies and associated software, with a specific focus on key features and capabilities of the independently developed J Monte Carlo transport (JMCT) software. -
表 1 VENUS-3临界模型计算结果比较
Table 1. Comparison of Calculation Results of VENUS-3 Critical Model
程序 keff 相对偏差/% MCNP 0.98638(0.00022) 0.24 JMCT 0.98918(0.00022) 相对偏差=[(JMCT计算结果−MCNP计算结果)/JMCT计算结果]×100%;括号内为统计误差,下同。 表 2 VENUS-3中子通量密度计算结果
Table 2. Neutron Flux of VENUS-3 Model
计数几何块 中子通量密度/(cm−2·s−1) 相对偏差/% MCNP JMCT 堆芯外中心水通道 6.08083×10−4(0.0005) 6.11761×10−4(0.0006) 0.60 堆芯外内层围板 5.81696×10−4(0.0004) 5.76301×10−4(0.0004) 0.94 堆芯外热屏蔽层 1.84858×10−6(0.0027) 1.84418×10−6(0.0028) 0.24 压力容器下层水区 5.02655×10−7(0.0020) 5.03376×10−7(0.0022) 0.14 表 3 VENUS-3光子通量密度计算结果
Table 3. Photon Flux of VENUS-3 Model
计数几何块 光子通量密度/(cm−2·s−1) 相对偏差/% MCNP JMCT 堆芯外中心水通道 3.85463×10−4(0.0013) 3.83573×10−4(0.0014) 0.49 堆芯外内层围板 3.97089×10−4(0.0008) 3.94740×10−4(0.0008) 0.59 堆芯外热屏蔽层 5.84187×10−6(0.0027) 5.84101×10−6(0.0029) 0.01 压力容器下层水区 1.15948×10−6(0.0047) 1.15460×10−6(0.0045) 0.42 表 4 Watts Bar启堆物理参数计算结果
Table 4. Zero Power Physics Test Results of Watts Bar
参数 测量值 KENO-VI JMCT KENO-VI与测量值偏差 JMCT与测量值偏差 A棒组价值/pcm 843 898±2 903±2 55 60 SA棒组价值/pcm 435 447±2 439±2 12 4 硼价值/(pcm·ppm−1) −10.77 −10.21±0.02 −10.21±0.02 0.56 0.56 温度反应性系数/(pcm·℉−1) −2.17 −3.19±0.04 −3.26±0.04 −1.02 −1.09 1pcm=10−5。 -
[1] METROPOLIS N. The beginning of the Monte Carlo method[J]. Los Alamos Science, 1987, 15: 125-130. [2] LARSEN E W. An overview of neutron transport problems and simulation techniques[C]//Computational Methods in Transport. Berlin: Springer, 2006: 513-534. [3] BROWN F B. Monte Carlo techniques for nuclear systems-theory lectures: LA-UR-16-29043[R]. Los Alamos: Los Alamos National Laboratory, 2016. [4] X-5 Monte Carlo Team. MCNP—a general N-particle transport code, version 5. volume I: overview and theory: LA-UR-03-1987[R]. Los Alamos: Los Alamos National Laboratory, 2003. [5] BROWN F B, MOSTELLER R D, MARTIN W R. Monte Carlo - advances and challenges: LA-UR-08-05891[R]. Los Alamos: Los Alamos National Laboratory, 2008. [6] 谢仲生, 邓力. 中子输运理论数值模拟方法[M]. 第2版, 西安: 西安交通大学出版社,2022: 271.谢仲生, 邓力. 中子输运理论数值模拟方法[M]. 第2版, 西安: 西安交通大学出版社, 2022: 271. [7] HAMILTON S P, EVANS T M. Continuous-energy Monte Carlo neutron transport on GPUs in the shift code[J]. Annals of Nuclear Energy, 2019, 128: 236-247. doi: 10.1016/j.anucene.2019.01.012 [8] METROPOLIS N, ULAM S. The Monte Carlo method[J]. Journal of the American Statistical Association, 1949, 44(247): 335-341. doi: 10.1080/01621459.1949.10483310 [9] GOERTZEL G, KALOS M H. Monte Carlo methods in transport problems, in progress in nuclear energy[M]. New York: Pergamon Press, 1958: 2. [10] COLEMAN W A. Mathematical verification of a certain Monte Carlo sampling technique and applications of the technique to radiation transport problems[J]. Nuclear Science and Engineering, 1968, 32(1): 76-81. doi: 10.13182/NSE68-1 [11] CRAMER S N. Next flight estimation for the fictitious scattering Monte Carlo method: NSA-30-017331[R]. Oak Ridge: Union Carbide Corp, 1974. [12] CRAMER S N. Application of the fictitious scattering model for deep-penetration Monte Carlo calculations[J]. Nuclear Science and Engineering, 1978, 65(2): 237-253. [13] COVEYOU R R, CAIN V R, YOST K J. Adjoint and importance in Monte Carlo application[J]. Nuclear Science and Engineering, 1967, 27(2): 219-234. doi: 10.13182/NSE67-A18262 [14] NAKAMURA S. Computational methods in engineering and science[M]. New York: Wiley and Sons, 1977: 9. [15] BUSIENKO N P, GOLENKO D I, SHREIDER Y A. The Monte Carlo method: the method of statistical trials[M]. Oxford: PERGAMON PRESS, 2009: 1-396. [16] CARTER L L, CASHWELL E D. Particle-transport simulation with the Monte Carlo method: TID-26607[R]. Los Alamos: Los Alamos National Laboratory, 1975. [17] AMSTER H J, DJOMEHRI M J. Prediction of statistical error in Monte Carlo transport calculations[J]. Nuclear Science and Engineering, 1976, 60(2): 131-142. doi: 10.13182/NSE76-A26869 [18] LUX I. Systematic study of some standard variance reduction techniques[J]. Nuclear Science and Engineering, 1978, 67(3): 317-325. doi: 10.13182/NSE78-A27252 [19] 康崇禄. 蒙特卡罗方法理论和应用[M]. 北京: 科学出版社,2015: 1-470. [20] FOX D, THRUN S, BURGARD W. Sequential Monte Carlo methods in practice[M]. Berlin: Springer, 2001: 3-14. [21] CAFLISCH R E. Monte Carlo and Quasi-Monte Carlo methods[J]. Acta Numerica, 1998, 7: 1-49. doi: 10.1017/S0962492900002804 [22] CEPERLEY D, ALDER B. Quantum Monte Carlo[J]. Science, 1986, 231(4738): 555-560. doi: 10.1126/science.231.4738.555 [23] MCGREEVY R L. Reverse Monte Carlo modelling[J]. Journal of Physics: Condensed Matter, 2001, 13(46): R877-R913. doi: 10.1088/0953-8984/13/46/201 [24] BRIESMEISTER J F. MCNP-a general Monte Carlo N-particle transporte code: LA12625-M[R]. Los Alamos: Los Alamos National Laboratory, 1997. [25] STEPHEN M. KENO-VI primer: A primer for criticality calculations with SCALE/KENO-VI using GeeWiz: ORNL/TM-2008/069[R]. State of Tennessee: Oak Ridge National Laboratory, 2008. [26] NELSON W R, HIRAYAMA H, ROGERS D W O. The EGS4 code system: SLAC-265[R]. Menlo Park: SLAC National Accelerator Laboratory, 1985. [27] EMMETT M B. MORSE-CGA: a Monte Carlo radiation transport code with array geometry capability: ORNL-6174[R]. Oak Ridge: Oak Ridge National Laboratory, 1985. [28] WRIGHT G A, SHUTTLEWORTH E, GRIMSTONE M J, et al. The status of the general radiation transport code MCBEND[J]. NIMB, 2024, 213: 162-166. [29] SIMON D RICHARDS, CHRIS M J BAKER, ADAM J BIRD, et al. MONK and MCBEND: Current status and recent developments[J]. Annals of Nuclear Energy, 2015, 82: 63-73. [30] KANDIEVY Z, KASHAEVA E A, KHATUNTSEV K E, et al. PRIZMA status[J]. Annals of Nuclear Energy, 2015, 82: 116-120. [31] ALEXEEV N I, KALUGIN M A, SHKAROVKY D A, et al. Verification and validation of MCU-REA/1 code for criticality and burnup calculations of VVER reactors: RRCKI-36/18-2006[R]. Kurchatov, Kursk Oblast: Kurchmov Institute, 2006. [32] PETIT O. Variance reduction adjustment in Monte Carlo TRIPOLI-4 neutron gamma coupled calculations[J]. Nucl. Sci. Technol., 2014, 4: 408. [33] YASUNOBU NAGAYA, KEISUKE OKUMURA, TAKESHI SAKURAI, et al. MVP/GMVP Version 3: General purpose Monte Carlo Code for neutron and photon transport calculations based on continuous energy and multigroupMethods: JAERI-Data-Code-2016-018[R]. Japan: Japan Atomic Energy Agency, 2017. [34] AGOSTINELLI S, ALLISON J, AMAKO K, et al. GEANT4-a simulation toolkit[J]. NIMA, 2003, 506: 250-303. [35] PROCASSINI R J, CULLEN D E, GREENMAN G M, et al. Verification and validation of MERCURY: a modern, Monte Carlo particle transport code: UCRL-CONF-208667[R]. Livermore: Lawrence Livermore National Laboratory, 2005. [36] KELLY D J, SUTTON T M, WILSON S C. MC21 analysis of the nuclear energy agency Monte Carlo performance benchmark problem[C]. Proc. Advances in Reactor Physics - Linking Research, Industry, and Education (PHYSOR 2012), Knoxville, Tennessee: American Nuclear Society, 2012. [37] ROMANO P K, HORELIK N E, HERMAN B R, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97. doi: 10.1016/j.anucene.2014.07.048 [38] SHIM H J, HAN B S, JUNG J S, et al. McCARD: Monte Carlo code for advanced reactor design and analysis[J]. Nuclear Engineering and Technology, 2012, 44(2): 161-176. doi: 10.5516/NET.01.2012.503 [39] LEPPÄNEN J, PUSA M, VIITANEN T, et al. The serpent Monte Carlo code: status, development and applications in 2013[J]. Annals of Nuclear Energy, 2015, 82: 142-150. [40] GOORLEY J T, JAMES M R, BOOTH T E, et al. Initial MCNP6 release overview-MCNP6 beta 3: LA-UR-12-26631[R]. Los Alamos: Los Alamos National Laboratory, 2012. [41] HAMILTON S P, EVANS T M, ROYSTON K E, et al. Domain decomposition in the GPU-accelerated shift Monte Carlo code[J]. Annals of Nuclear Energy, 2022, 166: 108687. doi: 10.1016/j.anucene.2021.108687 [42] MICHAEL POZULP, BRET BECK, RYAN BLEILE, et al. Status of mercury and imp: two Monte Carlo transport codes developed using shared infrastructure at Lawrence Livermore National Laboratory[J]. EPJ- Nuclear Science & Technologies, 2024, 10: 19. [43] CHOI N, KIM K M, JOO H G, Initial development of PRAGMA – A GPU-based continuous energy Monte Carlo code for practical applications[C]. Goyang, Korea: Korean Nuclear Society Autumn Meeting, 2019. [44] MCKINLEY M S, BLIELE R, BRANTLEY P S, et al. Status of LLNL Monte Carlo transport codes on sierra GPUs: LLNL-CONF-773124[R]. Livermore: Lawrence Livermore National Laboratory, 2019: 2160-2165. [45] ROSE P F. ENDF-201: ENDF/B-VI summary documentation: BNL-NCS-17541[R]. Upton: Brookhaven National Laboratory, 1991. [46] KONING A, FORREST R, KELLETT M, et al. The JEFF-3.1 nuclear data library - JEFF report 21: ISNT 92-64-02314-3[R]. Le Seine Saint-Germain: Organisation for Economic Co-Operation and Development, Nuclear Energy Agency, 2006. [47] Blokhin A I, Gai E V, Ignatyuk A V, et al. NEW VERSION OF NEUTRON EVALUATED DATA LIBRARY BROND-3.1, Problems of Atomic Science and Technology[J]. Series: Nuclear and Reactor Constants, 2016, 506: 2-5. [48] NAKAGAWA T, SHIBATA K, CHIBA S, et al. Japanese evaluated nuclear data library version 3 revision-2: JENDL-3.2[J]. Journal of Nuclear Science and Technology, 1995, 32(12): 1259-1271. doi: 10.1080/18811248.1995.9731849 [49] GE Z G, XU R R, WU H C, et al. CENDL-3.2: the new version of Chinese general purpose evaluated nuclear data library[J]. EPJ Web of Conferences, 2020, 239: 09001. doi: 10.1051/epjconf/202023909001 [50] MACFARLANE R E, MUIR D W. The NJOY nuclear data processing system-version 91: LA-12740-M[R]. Los Alamos: Los Alamos National Laboratory, 1994. [51] 邓力,刘杰,张文勇. 粒子输运蒙特卡罗程序MCNP在MPI下的并行化及完善[J]. 数值计算与计算机应用,2003, 24(3): 161-166. doi: 10.3969/j.issn.1000-3266.2003.03.001 [52] 邓力,张文勇. MCNP-4C多粒子输运蒙特卡罗程序的MPI并行化[J]. 数值计算与计算机应用,2006, 27(1): 52-59. doi: 10.3969/j.issn.1000-3266.2006.01.007 [53] 刘杰,邓力,胡庆丰,等. 非定常Monte Carlo输运问题的并行算法[J]. 计算机学报,2004, 27(1): 99-106. doi: 10.3321/j.issn:0254-4164.2004.01.012 [54] 刘镇洲,李刚,邓力,等. MCNP程序几何描述能力扩展及应用测试[J]. 原子能科学技术,2013, 47(3): 458-461. doi: 10.7538/yzk.2013.47.03.0458 [55] 李刚,邓力,李树,等. 非定常辐射输运问题的蒙特卡罗自适应偏倚抽样[J]. 物理学报,2011, 60(2): 022401. [56] 邓力,胡泽华,李刚,等. 三维多群P5中子输运蒙特卡罗程序MCMG及检验[J]. 原子能科学技术,2011, 45(8): 943-948. [57] 胡泽华,邓力,陈朝斌,等. MCMG程序用于多群截面检验的可行性研究[J]. 原子能科学技术,2010, 44(12): 1469-1476. [58] 邓力,胡泽华,李刚,等. MCMG蒙特卡罗多群-连续截面耦合中子输运计算[J]. 原子能科学技术,2013, 47(3): 329-333. [59] 邓力,胡泽华,李刚,等. 三维中子-光子输运的蒙特卡罗程序MCMG[J]. 强激光与粒子束,2013, 25(1): 163-168. [60] DENG Li, XIE Zhongsheng, ZHANG Jianming. MCMG: A 3-D multigroup P3 Monte Carlo code and its benchmarks[J]. J Nucl. Sci. Tech., 2000, 37: 608-614. [61] DENG L, LI G, ZHANG B Y, et al. A high fidelity general purpose 3-D Monte Carlo particle transport program JMCT3.0[J]. Nuclear Science and Techniques, 2022, 33(8): 108. doi: 10.1007/s41365-022-01092-0 [62] WANG K, LI Z G, SHE D, et al. RMC - a Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048 [63] 吴宏春,贺清明,曹良志,等. 深穿透跨尺度辐射场分析软件NECP-MCX研发及应用[J]. 原子能科学技术,2024, 58(3): 528-538. doi: 10.7538/yzk.2023.youxian.0481 [64] 吴宜灿,宋婧,胡丽琴,等. 超级蒙特卡罗核计算仿真软件系统SuperMC[J]. 核科学与工程,2016, 36(1): 62-71. [65] DENG LI, YE TAO, LI GANG, et al. 3-D Monte Carlo neutron-photon transport code JMCT and its algorithms[C]. Kyoto, Japan: PHYSOR 2014, 2014. [66] DENG L, LI G, ZHANG B Y, et al. JMCT V2.0 Monte Carlo code with integrated nuclear system feedback for simulation of BEAVRS model[C]. Cancun, Mexico: PHYSOR 2018, 2018. [67] MA Y, FU Y G, QIN G M. The design of JLAMT: an aided tool for large-scale complex physical modeling[C]//40th Anniversary on ICGG 2018 - Proceedings of the 18th International Conference on Geometry and Graphics. Milan: Springer, 2019: 877-883. [68] CAO Y, MO Z Y, XIAO L, et al. Efficient visualization of high-resolution virtual nuclear reactor[J]. Journal of Visualization, 2018, 21(5): 857-871. doi: 10.1007/s12650-018-0487-1 [69] LI R, ZHANG L Y, SHI D F, et al. Criticality search of soluble boron iteration in MC code JMCT[J]. Energy Procedia, 2017, 127: 329-334. doi: 10.1016/j.egypro.2017.08.118 [70] 邱有恒,邓力,李百文,等. 几种重要性函数在粒子输运蒙特卡罗模拟中的应用[J]. 原子能科学技术,2013, 47(S2): 673-677. [71] 邓力,李瑞,丁谦学,等. 基于JMCT秦山核电厂一期反应堆屏蔽计算与分析[J]. 核动力工程,2021, 42(2): 173-179. [72] ZHENG Z, MEI Q l, DENG L. Study on variance reduction technique based on adjoint discrete ordinate method[J]. Annals of Nuclear Energy, 2018, 112: 374-382. doi: 10.1016/j.anucene.2017.10.028 [73] SHANGGUAN D H, LI G, ZHANG B Y, et al. Uniform tally density-based strategy for efficient global tallying in Monte Carlo criticality calculation[J]. Nuclear Science and Engineering, 2016, 182(4): 555-562. doi: 10.13182/NSE15-32 [74] 刘雄国,邓力,胡泽华,等. JMCT程序在线多普勒展宽研究[J]. 物理学报,2016, 65(9): 092501. doi: 10.7498/aps.65.092501 [75] ZHENG Z, WANG M Q, LI H, et al. Application of a 3D discrete Ordinates-Monte Carlo coupling method to deep-penetration shielding calculation[J]. Nuclear Engineering and Design, 2018, 326: 87-96. doi: 10.1016/j.nucengdes.2017.11.005 [76] 邓力,李瑞,许海波,等. 针对反应堆机械反应性补偿的蒙特卡罗模拟方法: 中国,202210702142.7[P]. 2022-06-21. [77] 谭笑,邓力,王鑫,等. 蒙特卡罗粒子输运软件JMCT非结构网格计算功能开发及检验[J]. 原子能科学技术,2024, 58(12): 2540-2545. [78] MAERKER R E. Analysis of the VENUS-3 experiments: NUREG/CR-5338, ORNL/TM-11106[R]. Washington: Nuclear Regulatory Commission, 1989. [79] GODFREY A T. VERA Core physics benchmark progression problem specifications: CASL-U-2012-0131-004[R]. Oak Ridge: Oak Ridge National Laboratory, 2014. [80] 刘鹏,史敦福,李瑞,等. 基于蒙特卡罗程序JMCT模拟计算堆芯物理基准题VERA[J]. 原子能科学技术,2023, 57(6): 1131-1139. -