高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LBM中子扩散方程的POD降阶

池泓航 王亚辉 马宇

池泓航, 王亚辉, 马宇. 基于LBM中子扩散方程的POD降阶[J]. 核动力工程, 2025, 46(S1): 8-12. doi: 10.13832/j.jnpe.2025.S1.0008
引用本文: 池泓航, 王亚辉, 马宇. 基于LBM中子扩散方程的POD降阶[J]. 核动力工程, 2025, 46(S1): 8-12. doi: 10.13832/j.jnpe.2025.S1.0008
Chi Honghang, Wang Yahui, Ma Yu. POD Order Reduction Based on LBM Neutron Diffusion Equation[J]. Nuclear Power Engineering, 2025, 46(S1): 8-12. doi: 10.13832/j.jnpe.2025.S1.0008
Citation: Chi Honghang, Wang Yahui, Ma Yu. POD Order Reduction Based on LBM Neutron Diffusion Equation[J]. Nuclear Power Engineering, 2025, 46(S1): 8-12. doi: 10.13832/j.jnpe.2025.S1.0008

基于LBM中子扩散方程的POD降阶

doi: 10.13832/j.jnpe.2025.S1.0008
基金项目: 国家自然科学基金(12205389);广东省基础与应用基础研究基金(2025A1515011855);核反应堆系统设计技术重点实验室基金(KFKT-05-FWHT-WU-2023014)
详细信息
    作者简介:

    池泓航(1997—),男,博士研究生,现主要从事反应堆物理相关研究工作,E-mail: chihh@mail2.sysu.edu.cn

    通讯作者:

    王亚辉,E-mail: wangyh296@mail.sysu.edu.cn

  • 中图分类号: TL329

POD Order Reduction Based on LBM Neutron Diffusion Equation

  • 摘要: 在反应堆工程的多物理场耦合统一计算中,格子玻尔兹曼方法(LBM)作为一套成熟可靠的方法有着良好的应用前景。然而,其在计算复杂堆芯结构时的计算资源占用仍然是一个亟需解决的问题。为了提升计算效率,减少其对计算资源的需求,本文提出了基于LBM中子扩散方程的本征正交分解(POD)降阶方法。基于LBM中子扩散方程,建立其对应的POD降阶模型,在保证其计算精度的前提下,实现上千倍加速比的计算效果。

     

  • 图  1  NDLBM边界处理示意图

    Figure  1.  NDLBM Boundary Processing Diagram

    图  2  TWIGL基准题示意图

    Figure  2.  Diagram of TWIGL

    图  3  TWIGL基准题NDLBM与POD降阶计算结果的相对误差

    Figure  3.  Relative Error between NDLBM and POD Reduced-Order Method for TWIGL

    图  4  Biblis基准题示意图

    Figure  4.  Diagram of Biblis

    图  5  Biblis基准题NDLBM与POD降阶计算结果的相对误差

    Figure  5.  Relative Error between NDLBM and POD Reduced-Order Method for Biblis

  • [1] CHEN S Y, DOOLEN G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30: 329-364. doi: 10.1146/annurev.fluid.30.1.329
    [2] WANG Y H, MA Y, XIE M. High-order lattice Boltzmann method for multi-group neutron diffusion solution[J]. Progress in Nuclear Energy, 2019, 110: 341-353. doi: 10.1016/j.pnucene.2018.10.014
    [3] WANG Y H, PENG X J, XIE M, et al. High-order lattice Boltzmann framework and its adaptive mesh refinement in the neutron transport SP3 solutions[J]. Progress in Nuclear Energy, 2020, 128: 103449. doi: 10.1016/j.pnucene.2020.103449
    [4] WANG Y H, XIE M, MA Y. Neutron transport solution of lattice Boltzmann method and streaming-based block-structured adaptive mesh refinement[J]. Annals of Nuclear Energy, 2018, 118: 249-259. doi: 10.1016/j.anucene.2018.04.013
    [5] WANG Y H, XIE M, MA Y. Analysis of the multi-physics approach using the unified lattice Boltzmann framework[J]. Annals of Nuclear Energy, 2020, 143: 107500. doi: 10.1016/j.anucene.2020.107500
    [6] ZHANG C Y, CHEN G. Fast solution of neutron diffusion problem by reduced basis finite element method[J]. Annals of Nuclear Energy, 2018, 111: 702-708. doi: 10.1016/j.anucene.2017.09.044
    [7] ZHANG C Y, CHEN G. Fast solution of neutron transport SP3 equation by reduced basis finite element method[J]. Annals of Nuclear Energy, 2018, 120: 707-714. doi: 10.1016/j.anucene.2018.06.042
    [8] CHI H H, WANG Y H, MA Y. Reduced-order with least square-finite difference method for neutron transport equation[J]. Annals of Nuclear Energy, 2023, 191: 109914. doi: 10.1016/j.anucene.2023.109914
    [9] LI Z, MA Y, CAO L Z, et al. Proper orthogonal decomposition based online power-distribution reconstruction method[J]. Annals of Nuclear Energy, 2019, 131: 417-424. doi: 10.1016/j.anucene.2019.04.010
    [10] WANG Y H, CHI H H, MA Y. Nodal expansion method based reduced-order model for control rod movement[J]. Annals of Nuclear Energy, 2024, 198: 110279. doi: 10.1016/j.anucene.2023.110279
    [11] GONG H L, CHEN W, ZHANG C Y, et al. Fast solution of neutron diffusion problem with movement of control rods[J]. Annals of Nuclear Energy, 2020, 149: 107814. doi: 10.1016/j.anucene.2020.107814
    [12] LIANG Y C, LEE H P, LIM S P, et al. Proper orthogonal decomposition and its applications – part I: theory[J]. Journal of Sound and Vibration, 2002, 252(3): 527-544. doi: 10.1006/jsvi.2001.4041
    [13] LIANG Y C, LIN W Z, LEE H P, et al. Proper orthogonal decomposition and its applications – part Ⅱ: Model reduction for MEMS dynamical analysis[J]. Journal of Sound and Vibration, 2002, 256(3): 515-532. doi: 10.1006/jsvi.2002.5007
    [14] SUTTON T M, AVILES B N. Diffusion theory methods for spatial kinetics calculations[J]. Progress in Nuclear Energy, 1996, 30(2): 119-182. doi: 10.1016/0149-1970(95)00082-U
  • 加载中
图(5)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  1
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-10
  • 修回日期:  2025-03-26
  • 刊出日期:  2025-07-09

目录

    /

    返回文章
    返回