High-fidelity Neutronic, Thermal-Mechanical and Heat Pipe Heat Transfer Study of Solid-state Reactors
-
摘要: 相比于传统压水堆,固态堆运行温度较高,热膨胀带来的反馈效应显著。提出一种高保真核-热-力-热管耦合模型,在RMC-ANSYS耦合基础上,利用热管分析程序HPTRAN计算热管轴向温度分布,为热学计算提供更准确的边界条件。并对燃料、基体形状反馈进行解耦,能准确统计热膨胀后燃料与基体的相对位置、形状、密度、温度等信息。将耦合模型用于典型固态堆多物理场耦合分析,相较于不耦合,有效增殖系数$ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $降低570pcm(1pcm=10−5),燃料最大温度升高41 K,基体最大温度升高37 K。而热管在轴向上温差可达到200 K,径向上可达50 K。在固态堆多物理场耦合分析中使用固定的热管壁面温度会带来较大误差,说明引入热管耦合的必要性。
-
关键词:
- 固态堆 /
- 多物理场耦合 /
- 核-热-力-热管耦合
Abstract: Compared to traditional pressurized water reactors, solid-state reactors operate at higher temperatures, resulting in significant feedback effects due to thermal expansion. This paper proposes a high-fidelity neutronic, thermal-mechanical and heat pipe heat transfer coupling model. Based on the RMC-ANSYS coupling, the heat pipe analysis code HPTRAN is employed to calculate the axial temperature distribution of the heat pipe, providing more accurate boundary conditions for thermal calculations. By decoupling the feedback of fuel and monolith shapes, the model can accurately account for the relative positions, shapes, densities, and temperatures after thermal expansion. Applying the coupling model to multi-physics coupling of a typical solid-state reactor, the $ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $ decreases by 570pcm (1pcm = 10−5) compared with uncoupling, the maximum fuel temperature increases by 41 K, and the maximum monolith temperature increases by 37 K. The axial temperature difference in the heat pipe can reach 200 K, and the radial temperature difference can reach 50 K. Using fixed heat pipe wall temperatures in solid-state reactor multiphysics analysis introduces substantial errors, demonstrating the necessity of introducing heat pipe coupling. -
参数 参数值 备注 功率/kW 143 热功率 燃料芯块半径/cm 0.84 13.6 g/cm3 UN,平均富集度96% 气隙厚度/cm 0.01 6×10−5 g/cm3 氦气 热管气芯半径/cm 0.70 6.03×10−5g/cm3 气态钾 热管吸液芯厚度/cm 0.05 2.37 g/cm3不锈钢 热管液环厚度/cm 0.05 0.781 g/cm3 液态钾 热管壁厚度/cm 0.05 11.89 g/cm3 Mo-14Re 孔洞中心间距/cm 1.90 孔洞包括燃料孔洞和热管孔洞 结构基体边长/cm 10.597 11.89 g/cm3 Mo-14Re 堆芯围壳厚度/cm 0.254 2.04 g/cm3 Mo 反射层内半径/cm 21.3 3.01 g/cm3 BeO,厚度0.2 cm 堆芯活性区高度/cm 20 上下反射层高度/cm 11 3.01 g/cm3 BeO 控制鼓外半径/cm 5.0 3.01 g/cm3 BeO 中子毒物厚度/cm 0.2 2.52 g/cm3 B4C(圆心角120°) 表 2 耦合前后计算结果比较
Table 2. Comparison before and after Coupling
参数 耦合前 耦合后 变化值 $ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $ 1.0343±0.0002 1.0286±0.0002 −570pcm 燃料最大温度/K 1420 1461 +41 基体最大温度/K 1410 1447 +37 最大位移/mm 2.274 2.463 +0.189 -
[1] 陈宁. 移动式热管小堆非能动流动换热计算研究[D]. 北京: 华北电力大学(北京),2022. [2] 余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8. [3] YAN B H, WANG C, LI L G. The technology of micro heat pipe cooled reactor: a review[J]. Annals of Nuclear Energy, 2020, 135: 106948. doi: 10.1016/j.anucene.2019.106948 [4] MA Y G, LIU M Y, XIE B H, et al. Neutronic and thermal-mechanical coupling schemes for heat pipe-cooled reactor designs[J]. Journal of Nuclear Engineering and Radiation Science, 2022, 8(2): 021303. doi: 10.1115/1.4051612 [5] MA Y G, HAN W B, XIE B H, et al. Coupled neutronic, thermal-mechanical and heat pipe analysis of a heat pipe cooled reactor[J]. Nuclear Engineering and Design, 2021, 384: 111473. doi: 10.1016/j.nucengdes.2021.111473 [6] MA Y G, CHEN E H, YU H X, et al. Heat pipe failure accident analysis in megawatt heat pipe cooled reactor[J]. Annals of Nuclear Energy, 2020, 149: 107755. doi: 10.1016/j.anucene.2020.107755 [7] XIAO W, LI X Y, LI P J, et al. High-fidelity multi-physics coupling study on advanced heat pipe reactor[J]. Computer Physics Communications, 2022, 270: 108152. doi: 10.1016/j.cpc.2021.108152 [8] CHEN C, MEI H P, WANG Z, et al. Study of the thermal expansion effects of a space nuclear reactor with an integrated honeycomb core design using OpenMC and ANSYS[J]. Annals of Nuclear Energy, 2023, 191: 109901. doi: 10.1016/j.anucene.2023.109901 [9] WU A G, WANG W X, ZHANG K F, et al. Multiphysics coupling analysis of heat pipe reactor based on OpenMC and COMSOL Multiphysics[J]. Annals of Nuclear Energy, 2023, 194: 110115. doi: 10.1016/j.anucene.2023.110115 [10] 柴晓明,马誉高,韩文斌,等. 热管堆固态堆芯三维核热力耦合方法与分析[J]. 原子能科学技术,2021, 55(S2): 189-195. [11] 马誉高,刘旻昀,余红星,等. 热管冷却反应堆核热力耦合研究[J]. 核动力工程,2020, 41(4): 191-196. [12] GUO Y C, LI Z G, WANG K, et al. A transient multiphysics coupling method based on OpenFOAM for heat pipe cooled reactors[J]. Science China Technological Sciences, 2022, 65(1): 102-114. [13] 郭玉川,李泽光,王侃,等. 兆瓦级热管反应堆系统初步设计及堆芯“核—热—力”耦合方法研究[J]. 中国基础科学,2021, 23(3): 51-58. doi: 10.3969/j.issn.1009-2412.2021.03.008 [14] 谢碧衡. 基于RMC和MOOSE的热管堆有限元耦合程序开发[D]. 北京: 清华大学,2022. [15] CHEN H L, WANG W X, WU A G, et al. Multi-physics coupling analysis of test heat pipe reactor KRUSTY based on MOOSE framework[J]. Nuclear Engineering and Design, 2023, 414: 112597. doi: 10.1016/j.nucengdes.2023.112597 [16] WANG K, LI Z G, SHE D, et al. RMC–A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048 [17] MA Y G, ZHANG Y N, YU H X, et al. Capillary evaporating film model for a screen-wick heat pipe[J]. Applied Thermal Engineering, 2023, 225: 120155. doi: 10.1016/j.applthermaleng.2023.120155 [18] 钟睿诚,马誉高,邓坚,等. 热管堆多反馈效应下的启堆特性研究[J]. 核动力工程,2021, 42(S2): 104-108. [19] MA Y G, LIU M Y, CHEN E H, et al. RMC/ANSYS multi-physics coupling solutions for heat pipe cooled reactors analyses[J]. EPJ Web of Conferences, 2021, 247: 06007. doi: 10.1051/epjconf/202124706007 -