高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固态堆高保真核-热-力-热管耦合研究

何颖 邱美铭 马誉高 刘国栋 黄善仿 王侃

何颖, 邱美铭, 马誉高, 刘国栋, 黄善仿, 王侃. 固态堆高保真核-热-力-热管耦合研究[J]. 核动力工程, 2025, 46(S1): 13-20. doi: 10.13832/j.jnpe.2025.S1.0013
引用本文: 何颖, 邱美铭, 马誉高, 刘国栋, 黄善仿, 王侃. 固态堆高保真核-热-力-热管耦合研究[J]. 核动力工程, 2025, 46(S1): 13-20. doi: 10.13832/j.jnpe.2025.S1.0013
He Ying, Qiu Meiming, Ma Yugao, Liu Guodong, Huang Shanfang, Wang Kan. High-fidelity Neutronic, Thermal-Mechanical and Heat Pipe Heat Transfer Study of Solid-state Reactors[J]. Nuclear Power Engineering, 2025, 46(S1): 13-20. doi: 10.13832/j.jnpe.2025.S1.0013
Citation: He Ying, Qiu Meiming, Ma Yugao, Liu Guodong, Huang Shanfang, Wang Kan. High-fidelity Neutronic, Thermal-Mechanical and Heat Pipe Heat Transfer Study of Solid-state Reactors[J]. Nuclear Power Engineering, 2025, 46(S1): 13-20. doi: 10.13832/j.jnpe.2025.S1.0013

固态堆高保真核-热-力-热管耦合研究

doi: 10.13832/j.jnpe.2025.S1.0013
基金项目: 国家自然科学基金(No. 12305194)
详细信息
    作者简介:

    何 颖(2001—),女,博士研究生,现主要从事反应堆多场耦合方面研究,E-mail: he-y22@mails.tsinghua.edu.cn

  • 中图分类号: TL329

High-fidelity Neutronic, Thermal-Mechanical and Heat Pipe Heat Transfer Study of Solid-state Reactors

  • 摘要: 相比于传统压水堆,固态堆运行温度较高,热膨胀带来的反馈效应显著。提出一种高保真核-热-力-热管耦合模型,在RMC-ANSYS耦合基础上,利用热管分析程序HPTRAN计算热管轴向温度分布,为热学计算提供更准确的边界条件。并对燃料、基体形状反馈进行解耦,能准确统计热膨胀后燃料与基体的相对位置、形状、密度、温度等信息。将耦合模型用于典型固态堆多物理场耦合分析,相较于不耦合,有效增殖系数$ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $降低570pcm(1pcm=10−5),燃料最大温度升高41 K,基体最大温度升高37 K。而热管在轴向上温差可达到200 K,径向上可达50 K。在固态堆多物理场耦合分析中使用固定的热管壁面温度会带来较大误差,说明引入热管耦合的必要性。

     

  • 图  1  二元函数分片线性插值示意图

    Figure  1.  Schematic Diagram of Piecewise Linear Interpolation of Binary Function

    图  2  耦合流程图

    Figure  2.  Flowchart of Coupling Process

    图  3  MSR几何结构示意图

    Figure  3.  MSR Geometric Structure

    图  4  ANSYS建模示意图

    Figure  4.  Schematic Diagram of ANSYS Modeling

    图  5  热学-HPTRAN耦合迭代热管温度变化

    Figure  5.  Variation of Heat Pipe Temperature in Thermal-HPTRAN over Iteration

    图  6  最大温度随迭代次数变化

    Figure  6.  Variation of Maximum Temperature over Iterations

    图  7  最大应力、位移变化随迭代次数变化

    Figure  7.  Variation of Maximum Stress and Displacement over Iterations

    图  8  $ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $随迭代次数变化

    Figure  8.  Variation of $ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $ over Iterations

    图  9  耦合前后径向功率分布(按平均值归一化)

    Figure  9.  Radial Power Distribution before and after Coupling (Normalized by Average Value)

    图  10  径向功率相对偏差

    Figure  10.  Relative Deviation of Radial Power

    图  11  耦合前后轴向功率

    Figure  11.  Axial Power Distribution before and after Coupling

    图  12  耦合前后应力分布变化

    Figure  12.  Variation of Stress Distribution before and after Coupling

    图  13  耦合前后形变位移分布变化

    Figure  13.  Variation of Displacement Distribution before and after Coupling

    图  14  耦合前后温度分布变化

    Figure  14.  Variation of Temperature Distribution before and after Coupling

    图  15  耦合后热管温度分布

    Figure  15.  Heat Pipe Temperature Distribution After Coupling

    图  16  热管分类示意图

    Figure  16.  Schematic Diagram of Heat Pipe Classification

    表  1  MSR关键设计参数[4]

    Table  1.   Key Parameters of MSR[4]

    参数 参数值 备注
    功率/kW 143 热功率
    燃料芯块半径/cm 0.84 13.6 g/cm3 UN,平均富集度96%
    气隙厚度/cm 0.01 6×10−5 g/cm3 氦气
    热管气芯半径/cm 0.70 6.03×10−5g/cm3 气态钾
    热管吸液芯厚度/cm 0.05 2.37 g/cm3不锈钢
    热管液环厚度/cm 0.05 0.781 g/cm3 液态钾
    热管壁厚度/cm 0.05 11.89 g/cm3 Mo-14Re
    孔洞中心间距/cm 1.90 孔洞包括燃料孔洞和热管孔洞
    结构基体边长/cm 10.597 11.89 g/cm3 Mo-14Re
    堆芯围壳厚度/cm 0.254 2.04 g/cm3 Mo
    反射层内半径/cm 21.3 3.01 g/cm3 BeO,厚度0.2 cm
    堆芯活性区高度/cm 20
    上下反射层高度/cm 11 3.01 g/cm3 BeO
    控制鼓外半径/cm 5.0 3.01 g/cm3 BeO
    中子毒物厚度/cm 0.2 2.52 g/cm3 B4C(圆心角120°)
    下载: 导出CSV

    表  2  耦合前后计算结果比较

    Table  2.   Comparison before and after Coupling

    参数 耦合前 耦合后 变化值
    $ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $ 1.0343±0.0002 1.0286±0.0002 −570pcm
    燃料最大温度/K 1420 1461 +41
    基体最大温度/K 1410 1447 +37
    最大位移/mm 2.274 2.463 +0.189
    下载: 导出CSV
  • [1] 陈宁. 移动式热管小堆非能动流动换热计算研究[D]. 北京: 华北电力大学(北京),2022.
    [2] 余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8.
    [3] YAN B H, WANG C, LI L G. The technology of micro heat pipe cooled reactor: a review[J]. Annals of Nuclear Energy, 2020, 135: 106948. doi: 10.1016/j.anucene.2019.106948
    [4] MA Y G, LIU M Y, XIE B H, et al. Neutronic and thermal-mechanical coupling schemes for heat pipe-cooled reactor designs[J]. Journal of Nuclear Engineering and Radiation Science, 2022, 8(2): 021303. doi: 10.1115/1.4051612
    [5] MA Y G, HAN W B, XIE B H, et al. Coupled neutronic, thermal-mechanical and heat pipe analysis of a heat pipe cooled reactor[J]. Nuclear Engineering and Design, 2021, 384: 111473. doi: 10.1016/j.nucengdes.2021.111473
    [6] MA Y G, CHEN E H, YU H X, et al. Heat pipe failure accident analysis in megawatt heat pipe cooled reactor[J]. Annals of Nuclear Energy, 2020, 149: 107755. doi: 10.1016/j.anucene.2020.107755
    [7] XIAO W, LI X Y, LI P J, et al. High-fidelity multi-physics coupling study on advanced heat pipe reactor[J]. Computer Physics Communications, 2022, 270: 108152. doi: 10.1016/j.cpc.2021.108152
    [8] CHEN C, MEI H P, WANG Z, et al. Study of the thermal expansion effects of a space nuclear reactor with an integrated honeycomb core design using OpenMC and ANSYS[J]. Annals of Nuclear Energy, 2023, 191: 109901. doi: 10.1016/j.anucene.2023.109901
    [9] WU A G, WANG W X, ZHANG K F, et al. Multiphysics coupling analysis of heat pipe reactor based on OpenMC and COMSOL Multiphysics[J]. Annals of Nuclear Energy, 2023, 194: 110115. doi: 10.1016/j.anucene.2023.110115
    [10] 柴晓明,马誉高,韩文斌,等. 热管堆固态堆芯三维核热力耦合方法与分析[J]. 原子能科学技术,2021, 55(S2): 189-195.
    [11] 马誉高,刘旻昀,余红星,等. 热管冷却反应堆核热力耦合研究[J]. 核动力工程,2020, 41(4): 191-196.
    [12] GUO Y C, LI Z G, WANG K, et al. A transient multiphysics coupling method based on OpenFOAM for heat pipe cooled reactors[J]. Science China Technological Sciences, 2022, 65(1): 102-114.
    [13] 郭玉川,李泽光,王侃,等. 兆瓦级热管反应堆系统初步设计及堆芯“核—热—力”耦合方法研究[J]. 中国基础科学,2021, 23(3): 51-58. doi: 10.3969/j.issn.1009-2412.2021.03.008
    [14] 谢碧衡. 基于RMC和MOOSE的热管堆有限元耦合程序开发[D]. 北京: 清华大学,2022.
    [15] CHEN H L, WANG W X, WU A G, et al. Multi-physics coupling analysis of test heat pipe reactor KRUSTY based on MOOSE framework[J]. Nuclear Engineering and Design, 2023, 414: 112597. doi: 10.1016/j.nucengdes.2023.112597
    [16] WANG K, LI Z G, SHE D, et al. RMC–A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048
    [17] MA Y G, ZHANG Y N, YU H X, et al. Capillary evaporating film model for a screen-wick heat pipe[J]. Applied Thermal Engineering, 2023, 225: 120155. doi: 10.1016/j.applthermaleng.2023.120155
    [18] 钟睿诚,马誉高,邓坚,等. 热管堆多反馈效应下的启堆特性研究[J]. 核动力工程,2021, 42(S2): 104-108.
    [19] MA Y G, LIU M Y, CHEN E H, et al. RMC/ANSYS multi-physics coupling solutions for heat pipe cooled reactors analyses[J]. EPJ Web of Conferences, 2021, 247: 06007. doi: 10.1051/epjconf/202124706007
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-01
  • 修回日期:  2025-04-10
  • 刊出日期:  2025-07-09

目录

    /

    返回文章
    返回