Research on Phase Distribution Characteristics of Flow Field downstream the Spacer Grid in 5$ \times $5 Rod Bundle
-
摘要: 为获取压水堆燃料组件棒束通道内定位格架下游流场相分布特性,设计并制作了适用于5×5棒束通道原型尺寸的新型丝网探测器,使得测点间距达到1.05 mm。开展了带有定位格架的5×5棒束通道内空气-水两相流的空泡份额测量实验,分析了通道内空泡份额的分布特性,并对定位格架搅混翼所引发气相聚集的相分布特性进行了识别。实验结果表明,由于升力的翻转作用,在低空泡份额环境下气泡聚集在棒近壁区域,而在高空泡份额环境气泡聚集在子通道中心;定位格架搅混翼会导致通道内的气相峰值位置发生一定的迁移,且在棒束通道边壁处也观察到与格架边界搅混翼布置方向相关的气相聚集。所研制的丝网探测器可以用于更多类型的定位格架下游流场空泡份额测量,为定位格架结构优化设计提供参考。Abstract: In order to research the phase distribution characteristics downstream the spacer grid in 5×5 rod bundle, a new type of wire mesh sensor suitable for the prototype size of 5×5 rod bundle was designed and fabricated, and the distance between measuring points was 1.05 mm. The void fraction measurement experiment of air-water two phase flow in the 5×5 rod bundle with spacer grid was carried out. The void fraction distribution characteristics within the channel were analyzed, and the phase distribution characteristics induced by gas-phase accumulation due to spacer grid mixing vanes were identified. The experimental results show that due to the overturning effect of lift, bubbles gather near the rod wall under low void fraction conditions, while bubbles appear in the center of subchannel under high void fraction conditions. The spacer grid mixing vanes cause a certain migration of the gas peak position in the channel, and gas accumulation related to the orientation of boundary mixing vanes is also observed at the side wall of the rod bundle channel. The developed wire mesh sensor can be used to measure the void fraction in the downstream flow field of more types of spacer grids, and provide reference for the structural optimization design of spacer grids.
-
Key words:
- 5×5 rod bundle channel /
- Wire mesh sensor /
- Spacer grid /
- Void fraction
-
表 1 实验工况表
Table 1. Experimental Conditions
工况 液相表观流速(Jl )/(m·s−1) 气相表观流速(Jg)/(m·s−1) 1 0.583 0.060 2 0.583 0.203 3 0.583 0.456 4 0.583 0.683 5 0.758 0.060 6 0.986 0.060 7 1.128 0.060 8 1.666 0.060 9 0.758 0.456 10 0.758 0.683 表 2 三层丝网探测器的结构参数
Table 2. Structure Parameters of Three-layer Wire Mesh Sensor
结构参数 数值 电极丝数量 激励丝 63 接收丝 63 电极丝直径/mm 0.1 激励丝间距/mm 2.1 接收丝间距/mm 1.05 电极丝层间距/mm 2.0 棒间隙处测点数量 3 表 3 丝网探测器测量得到的通道时均空泡份额
Table 3. The Time-average Void Fraction Measured by Wire Mesh Sensor in Rod Bundle
工况 α 1 0.138 2 0.278 3 0.364 4 0.428 5 0.121 6 0.102 7 0.091 8 0.068 9 0.022 10 0.405 -
[1] 王小军,陈炳德,黄彦平,等. 棒束定位格架空泡份额分布特性实验研究[J]. 核科学与工程,2003, 23(2): 110-113,131. [2] 李兴,谭思超,祁沛垚,等. 棒束通道内定位格架搅混特性PIV可视化研究[J]. 原子能科学技术,2019, 53(4): 654-662. [3] 任佳星,王若好,王方东,等. 带定位格架棒束通道两相流相界面输运特性[J]. 哈尔滨工程大学学报,2023, 44(12): 2079-2086. [4] ANGLART H, NYLUND O, KURUL N, et al. CFD prediction of flow and phase distribution in fuel assemblies with spacers[J]. Nuclear Engineering and Design, 1997, 177(1-3): 215-228. doi: 10.1016/S0029-5493(97)00195-7 [5] 王小军,陈炳德,黄彦平,等. 棒束定位格架空气-水两相分布数值模拟[J]. 核动力工程,2003, 24(4): 338-343. [6] KREPPER E, KONČAR B, EGOROV Y. CFD modelling of subcooled boiling—concept, validation and application to fuel assembly design[J]. Nuclear Engineering and Design, 2007, 237(7): 716-731. doi: 10.1016/j.nucengdes.2006.10.023 [7] VENKATESWARARAO P, SEMIAT R, DUKLER A E. Flow pattern transition for gas-liquid flow in a vertical rod bundle[J]. International Journal of Multiphase Flow, 1982, 8(5): 509-524. doi: 10.1016/0301-9322(82)90021-0 [8] LIU H, PAN L M, HIBIKI T, et al. Axial development of gas-liquid flow regime maps in a vertical 5×5 rod bundle with prototypic spacer grids[J]. Nuclear Engineering and Design, 2018, 339: 1-10. doi: 10.1016/j.nucengdes.2018.08.021 [9] SADATOMI M, KAWAHARA A, KANO K, et al. Flow characteristics in hydraulically equilibrium two-phase flows in a vertical 2 $ \times $3 rod bundle channel[J]. International Journal of Multiphase Flow, 2004, 30(9): 1093-1119. doi: 10.1016/j.ijmultiphaseflow.2004.05.012 [10] PARANJAPE S, ISHII M, HIBIKI T. Modeling and measurement of interfacial area concentration in two-phase flow[J]. Nuclear Engineering and Design, 2010, 240(9): 2329-2337. doi: 10.1016/j.nucengdes.2009.11.009 [11] YANG X, SCHLEGEL J P, LIU Y, et al. Experimental study of interfacial area transport in air–water two phase flow in a scaled 8×8 BWR rod bundle[J]. International Journal of Multiphase Flow, 2013, 50: 16-32. doi: 10.1016/j.ijmultiphaseflow.2012.10.006 [12] KOK H V, VAN DER HAGEN T H J J, MUDDE R F. Subchannel void-fraction measurements in a 6×6 rod bundle using a simple gamma-transmission method[J]. International Journal of Multiphase Flow, 2001, 27(1): 147-170. doi: 10.1016/S0301-9322(00)00005-7 [13] BIEBERLE A, HOPPE D, SCHLEICHER E, et al. Void measurement using high-resolution gamma-ray computed tomography[J]. Nuclear Engineering and Design, 2011, 241(6): 2086-2092. doi: 10.1016/j.nucengdes.2011.03.028 [14] PRASSER H M, BÖTTGER A, ZSCHAU J. A new electrode-mesh tomograph for gas-liquid flows[J]. Flow Measurement and Instrumentation, 1998, 9(2): 111-119. doi: 10.1016/S0955-5986(98)00015-6 [15] ITO D, PRASSER H M, KIKURA H, et al. Uncertainty and intrusiveness of three-layer wire-mesh sensor[J]. Flow Measurement and Instrumentation, 2011, 22(4): 249-256. doi: 10.1016/j.flowmeasinst.2011.03.002 [16] PRASSER H M, MISAWA M, TISEANU I. Comparison between wire-mesh sensor and ultra-fast X-ray tomograph for an air-water flow in a vertical pipe[J]. Flow Measurement and Instrumentation, 2005, 16(2-3): 73-83. doi: 10.1016/j.flowmeasinst.2005.02.003 [17] MANERA A, OZAR B, PARANJAPE S, et al. Comparison between wire-mesh sensors and conductive needle-probes for measurements of two-phase flow parameters[J]. Nuclear Engineering and Design, 2009, 239(9): 1718-1724. doi: 10.1016/j.nucengdes.2008.06.015 [18] YLÖENEN A, PRASSER H M. Two-phase flow and cross-mixing measurements in a rod bundle[C]//Proceedings of the 14th International Topical Meeting on Nuclear Reactor Thermalhydraulics. Toronto:ANS, 2011. [19] 王颖龙,谢浩,熊进标,等. 基于丝网传感器的5×5棒束通道空泡分布测量研究[J]. 核动力工程,2022, 43(1): 84-91. -