高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

5×5棒束通道定位格架下游流场相分布特性研究

曹铭泽 闫晓 张君毅 龚随军 幸奠川 徐建军

曹铭泽, 闫晓, 张君毅, 龚随军, 幸奠川, 徐建军. 5×5棒束通道定位格架下游流场相分布特性研究[J]. 核动力工程, 2025, 46(S1): 33-40. doi: 10.13832/j.jnpe.2025.S1.0033
引用本文: 曹铭泽, 闫晓, 张君毅, 龚随军, 幸奠川, 徐建军. 5×5棒束通道定位格架下游流场相分布特性研究[J]. 核动力工程, 2025, 46(S1): 33-40. doi: 10.13832/j.jnpe.2025.S1.0033
Cao Mingze, Yan Xiao, Zhang Junyi, Gong Suijun, Xing Dianchuan, Xu Jianjun. Research on Phase Distribution Characteristics of Flow Field downstream the Spacer Grid in 5$ \times $5 Rod Bundle[J]. Nuclear Power Engineering, 2025, 46(S1): 33-40. doi: 10.13832/j.jnpe.2025.S1.0033
Citation: Cao Mingze, Yan Xiao, Zhang Junyi, Gong Suijun, Xing Dianchuan, Xu Jianjun. Research on Phase Distribution Characteristics of Flow Field downstream the Spacer Grid in 5$ \times $5 Rod Bundle[J]. Nuclear Power Engineering, 2025, 46(S1): 33-40. doi: 10.13832/j.jnpe.2025.S1.0033

5×5棒束通道定位格架下游流场相分布特性研究

doi: 10.13832/j.jnpe.2025.S1.0033
详细信息
    作者简介:

    曹铭泽(1995—),男,博士,现主要从事燃料组件设计及性能分析方面的研究,E-mail: 18382190084@163.com

    通讯作者:

    闫 晓,E-mail: yanxiao@npic.ac.cn

  • 中图分类号: TL334

Research on Phase Distribution Characteristics of Flow Field downstream the Spacer Grid in 5$ \times $5 Rod Bundle

  • 摘要: 为获取压水堆燃料组件棒束通道内定位格架下游流场相分布特性,设计并制作了适用于5×5棒束通道原型尺寸的新型丝网探测器,使得测点间距达到1.05 mm。开展了带有定位格架的5×5棒束通道内空气-水两相流的空泡份额测量实验,分析了通道内空泡份额的分布特性,并对定位格架搅混翼所引发气相聚集的相分布特性进行了识别。实验结果表明,由于升力的翻转作用,在低空泡份额环境下气泡聚集在棒近壁区域,而在高空泡份额环境气泡聚集在子通道中心;定位格架搅混翼会导致通道内的气相峰值位置发生一定的迁移,且在棒束通道边壁处也观察到与格架边界搅混翼布置方向相关的气相聚集。所研制的丝网探测器可以用于更多类型的定位格架下游流场空泡份额测量,为定位格架结构优化设计提供参考。

     

  • 图  1  空气-水两相回路

    Figure  1.  Air-Water Two-phase Flow Loop

    图  2  实验本体示意图

    Figure  2.  Schematic Diagram of Test Section

    图  3  6×6注气管束

    Figure  3.  6×6 Gas Injection Rod Bundle

    图  4  三层丝网探测器的电极丝分布

    红色—接收丝;绿色—上层激励丝;紫色—下层激励丝。

    Figure  4.  Electrode Wire Distribution of Three-layer Wire Mesh Sensor

    图  5  棒束通道测量截面

    Figure  5.  Measuring Cross-section of Rod Bundle Channel

    图  6  适用于棒束通道的丝网探测器

    Figure  6.  Wire Mesh Sensor Used in Rod Bundle Channel

    图  7  AFA-2G定位格架

    Figure  7.  AFA-2G Spacer Grid

    图  8  气相表观流速对时均空泡份额的影响分析

    xy—棒束通道内的x轴的坐标与y轴的坐标。

    Figure  8.  Analysis of the Influence of Air Phase Superficial Velocity on Time-average Void Fraction

    图  9  液相表观流速对时均空泡份额的影响分析

    Figure  9.  Analysis of the Influence of Liquid Phase Superficial Velocity on Time-average Void Fraction

    图  10  棒束通道中心线位置示意图

    Figure  10.  Centeral Line in Rod Bundle Channel

    图  11  棒束通道6条中心线时均空泡份额分布特性

    Figure  11.  Time-average Void Fraction Distribution on the 6 Central Lines in Rod Bundle Channel

    图  12  空泡份额峰值偏移现象与对应的搅混翼结构

    Figure  12.  Air Phase Peak Shifting of Void Fraction and Related Mixing Vane Structure

    图  13  棒束通道边壁侧搅混翼横流作用

    Figure  13.  Cross-flow Caused by Mixing Vane in Side Region of Rod Bundle

    图  14  定位格架下游流场边壁处气相聚集区

    Figure  14.  Air Phase Gathering Position in Downstream Flow Field of Spacer Grid

    图  15  格架边壁气相聚集壁面空泡份额分布

    圆外围参数代表该数据所在的角度,°;圆内的径向数据为空泡份额。

    Figure  15.  Distribution of Void Fraction in Side Region of Spacer Grid

    表  1  实验工况表

    Table  1.   Experimental Conditions

    工况 液相表观流速(Jl )/(m·s−1) 气相表观流速(Jg)/(m·s−1)
    1 0.583 0.060
    2 0.583 0.203
    3 0.583 0.456
    4 0.583 0.683
    5 0.758 0.060
    6 0.986 0.060
    7 1.128 0.060
    8 1.666 0.060
    9 0.758 0.456
    10 0.758 0.683
    下载: 导出CSV

    表  2  三层丝网探测器的结构参数

    Table  2.   Structure Parameters of Three-layer Wire Mesh Sensor

    结构参数 数值
    电极丝数量 激励丝 63
    接收丝 63
    电极丝直径/mm 0.1
    激励丝间距/mm 2.1
    接收丝间距/mm 1.05
    电极丝层间距/mm 2.0
    棒间隙处测点数量 3
    下载: 导出CSV

    表  3  丝网探测器测量得到的通道时均空泡份额

    Table  3.   The Time-average Void Fraction Measured by Wire Mesh Sensor in Rod Bundle

    工况 α
    1 0.138
    2 0.278
    3 0.364
    4 0.428
    5 0.121
    6 0.102
    7 0.091
    8 0.068
    9 0.022
    10 0.405
      
    下载: 导出CSV
  • [1] 王小军,陈炳德,黄彦平,等. 棒束定位格架空泡份额分布特性实验研究[J]. 核科学与工程,2003, 23(2): 110-113,131.
    [2] 李兴,谭思超,祁沛垚,等. 棒束通道内定位格架搅混特性PIV可视化研究[J]. 原子能科学技术,2019, 53(4): 654-662.
    [3] 任佳星,王若好,王方东,等. 带定位格架棒束通道两相流相界面输运特性[J]. 哈尔滨工程大学学报,2023, 44(12): 2079-2086.
    [4] ANGLART H, NYLUND O, KURUL N, et al. CFD prediction of flow and phase distribution in fuel assemblies with spacers[J]. Nuclear Engineering and Design, 1997, 177(1-3): 215-228. doi: 10.1016/S0029-5493(97)00195-7
    [5] 王小军,陈炳德,黄彦平,等. 棒束定位格架空气-水两相分布数值模拟[J]. 核动力工程,2003, 24(4): 338-343.
    [6] KREPPER E, KONČAR B, EGOROV Y. CFD modelling of subcooled boiling—concept, validation and application to fuel assembly design[J]. Nuclear Engineering and Design, 2007, 237(7): 716-731. doi: 10.1016/j.nucengdes.2006.10.023
    [7] VENKATESWARARAO P, SEMIAT R, DUKLER A E. Flow pattern transition for gas-liquid flow in a vertical rod bundle[J]. International Journal of Multiphase Flow, 1982, 8(5): 509-524. doi: 10.1016/0301-9322(82)90021-0
    [8] LIU H, PAN L M, HIBIKI T, et al. Axial development of gas-liquid flow regime maps in a vertical 5×5 rod bundle with prototypic spacer grids[J]. Nuclear Engineering and Design, 2018, 339: 1-10. doi: 10.1016/j.nucengdes.2018.08.021
    [9] SADATOMI M, KAWAHARA A, KANO K, et al. Flow characteristics in hydraulically equilibrium two-phase flows in a vertical 2 $ \times $3 rod bundle channel[J]. International Journal of Multiphase Flow, 2004, 30(9): 1093-1119. doi: 10.1016/j.ijmultiphaseflow.2004.05.012
    [10] PARANJAPE S, ISHII M, HIBIKI T. Modeling and measurement of interfacial area concentration in two-phase flow[J]. Nuclear Engineering and Design, 2010, 240(9): 2329-2337. doi: 10.1016/j.nucengdes.2009.11.009
    [11] YANG X, SCHLEGEL J P, LIU Y, et al. Experimental study of interfacial area transport in air–water two phase flow in a scaled 8×8 BWR rod bundle[J]. International Journal of Multiphase Flow, 2013, 50: 16-32. doi: 10.1016/j.ijmultiphaseflow.2012.10.006
    [12] KOK H V, VAN DER HAGEN T H J J, MUDDE R F. Subchannel void-fraction measurements in a 6×6 rod bundle using a simple gamma-transmission method[J]. International Journal of Multiphase Flow, 2001, 27(1): 147-170. doi: 10.1016/S0301-9322(00)00005-7
    [13] BIEBERLE A, HOPPE D, SCHLEICHER E, et al. Void measurement using high-resolution gamma-ray computed tomography[J]. Nuclear Engineering and Design, 2011, 241(6): 2086-2092. doi: 10.1016/j.nucengdes.2011.03.028
    [14] PRASSER H M, BÖTTGER A, ZSCHAU J. A new electrode-mesh tomograph for gas-liquid flows[J]. Flow Measurement and Instrumentation, 1998, 9(2): 111-119. doi: 10.1016/S0955-5986(98)00015-6
    [15] ITO D, PRASSER H M, KIKURA H, et al. Uncertainty and intrusiveness of three-layer wire-mesh sensor[J]. Flow Measurement and Instrumentation, 2011, 22(4): 249-256. doi: 10.1016/j.flowmeasinst.2011.03.002
    [16] PRASSER H M, MISAWA M, TISEANU I. Comparison between wire-mesh sensor and ultra-fast X-ray tomograph for an air-water flow in a vertical pipe[J]. Flow Measurement and Instrumentation, 2005, 16(2-3): 73-83. doi: 10.1016/j.flowmeasinst.2005.02.003
    [17] MANERA A, OZAR B, PARANJAPE S, et al. Comparison between wire-mesh sensors and conductive needle-probes for measurements of two-phase flow parameters[J]. Nuclear Engineering and Design, 2009, 239(9): 1718-1724. doi: 10.1016/j.nucengdes.2008.06.015
    [18] YLÖENEN A, PRASSER H M. Two-phase flow and cross-mixing measurements in a rod bundle[C]//Proceedings of the 14th International Topical Meeting on Nuclear Reactor Thermalhydraulics. Toronto:ANS, 2011.
    [19] 王颖龙,谢浩,熊进标,等. 基于丝网传感器的5×5棒束通道空泡分布测量研究[J]. 核动力工程,2022, 43(1): 84-91.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-05
  • 修回日期:  2025-01-20
  • 刊出日期:  2025-07-09

目录

    /

    返回文章
    返回