Research on Multi-source Heterogeneous Fault Characterization Method for Reactor Coolant Pump
-
摘要: 针对核电厂反应堆冷却剂泵(简称主泵)振动等高频传感信号调制、噪声干扰以及单传感器对故障诊断识别率低、证据缺乏的问题,本研究提出了一种基于循环平稳分析和D-S证据理论的主泵设备多源异类故障表征方法。通过使用时域分析和循环平稳分析对采集的高频传感数据进行处理,实现信号的解调和去噪,并计算特征参数,构建特征向量。在此基础上,基于D-S证据理论实现多源传感数据的融合,进而根据融合结果实现主泵设备典型故障的决策级诊断。试验验证结果表明,通过融合多源传感信息能够显著提高主泵设备典型故障的诊断识别率,并提高诊断结果的可解释性,相关研究成果能够为主泵设备的预测性维护提供参考依据,进而提升核电厂主泵设备的运行可靠性和智能化运维水平。Abstract: Aiming at the problems of high-frequency sensing signal modulation, noise interference, and the low fault recognition rate and lack of evidence in single-sensor fault diagnosis for nuclear power plant reactor coolant pumps (RCPs), this paper proposes a method of multi-source heterogeneous fault characterization for RCPs based on cyclic stationary analysis and D-S evidence theory. By using time domain analysis and cyclic stationary analysis to process the high frequency sensor data, the signal demodulation and denoising are realized, and the feature parameters are calculated to construct the feature vector. And then, multi-source sensing data is fused based on D-S evidence theory, and the typical fault diagnosis of RCPs is realized at decision level according to the fusion results. The experimental verification results show that the fusion of multi-source sensing information can significantly improve the diagnosis rate of typical RCP faults, and improve the interpretability of diagnosis results. The relevant research results can provide a reference for the predictive maintenance of RCPs, and improve the operation reliability and intelligent operation and maintenance level of RCPs in nuclear power plants.
-
表 1 试验数据集合
Table 1. Test Data Set
工况 样本数量 转子碰摩F1 轴承损伤F2 密封泄漏F3 无故障M 总体 工况1 800 800 800 800 3200 工况2 800 800 800 800 3200 工况3 800 800 800 800 3200 总和 2400 2400 2400 2400 9600 表 2 故障频率幅值与轴频幅值的比值
Table 2. Ratio of Fault Frequency Amplitude to Shaft Frequency Amplitude
类型 频谱 增强包络谱 轴频幅值 故障频率幅值 幅值比值 轴频幅值 故障频率幅值 幅值比值 振动信号 0.1486 0.0009 0.0061 0.3656 0.4415 1.2076 声信号 0.0389 0.0004 0.0103 0.1654 0.2012 1.2164 表 3 传感器1的参考向量
Table 3. Reference Vector for Sensor 1
故障类型 A1 A2 A3 A4 A5 A6 A7 F1 1.525 71.42 0.2098 56.32 241.9 282.4 145.5 F2 1.894 53.87 0.2943 31.99 252.8 291.8 145.9 F3 1.259 11.20 0.0542 3.124 247.3 287.5 146.5 M 1.262 11.84 0.1769 3.096 247.1 287.4 146.6 表 4 转子碰摩故障下的测试向量
Table 4. Test Vector under Rotor Rubbing Fault
传感器编号 B1 B2 B3 B4 B5 B6 B7 1号 1.512 57.22 0.1750 40.15 243.0 283.4 145.8 2号 1.548 76.41 −0.3312 54.59 244.6 284.8 146.0 3号 1.481 49.24 −0.4147 31.82 239.8 281.2 147.0 4号 1.318 24.14 0.1672 6.518 236.9 278.9 147.1 5号 1.397 19.41 −0.1572 7.227 238.1 279.7 146.7 6号 1.378 32.79 −0.2377 11.71 240.3 281.6 146.9 7号 1.259 7.487 0.3033 3.331 240.3 283.3 149.9 8号 1.254 6.313 0.3844 3.103 240.3 283.3 149.9 表 5 转子碰摩故障下所有传感器的BPA
Table 5. BPA for All Sensors under Rotor Rubbing Fault
证据 F1 F2 F3 M m1 0.8135 0.0136 0.0788 0.0939 m2 0.7644 0.0316 0.0930 0.1107 m3 0.8801 0.0348 0.0401 0.0448 m4 0.8767 0.0384 0.0366 0.0481 m5 0.8422 0.0450 0.0445 0.0681 m6 0.8321 0.0533 0.0517 0.0628 m7 0.6491 0.1091 0.1521 0.0895 m8 0.6179 0.1014 0.1885 0.0920 表 6 转子碰摩故障下的证据融合结果
Table 6. Evidence Fusion Results under Rotor Rubbing Fault
融合证据 F1 F2 F3 M m12 0.9814 0.0048 0.0064 0.0072 m123 0.9984 0.0003 0.0005 0.0006 m1234 0.9998 0 0 0 m12345 0.9999 0 0 0 m123456 0.9999 0 0 0 m1234567 0.9999 0 0 0 m12345678 0.9999 0 0 0 -
[1] 张金豹,邹天刚,王敏,等. 滚动轴承剩余使用寿命预测综述[J]. 机械科学与技术,2023, 42(1): 1-23. [2] 晏云海,郭瑜,伍星. 基于循环谱分析的鲁棒性滚动轴承故障特征提取方法[J]. 振动与冲击,2022, 41(6): 1-7. [3] 陈科,段伟建,吴胜利,等. 多深度学习模型决策融合的齿轮箱故障诊断分类方法[J]. 科学技术与工程,2022, 22(12): 4804-4811. doi: 10.3969/j.issn.1671-1815.2022.12.016 [4] LIN Y, LI Y Y, YIN X H, et al. Multisensor fault diagnosis modeling based on the evidence theory[J]. IEEE Transactions on Reliability, 2018, 67(2): 513-521. doi: 10.1109/TR.2018.2800014 [5] 李洋,赵鸣,徐梦瑶,等. 多源信息融合技术研究综述[J]. 智能计算机与应用,2019, 9(5): 186-189. [6] 蒋雯,邓鑫洋. D-S证据理论信息建模与应用[M]. 北京: 科学出版社,2018: 16-20. [7] 周志杰,唐帅文,胡昌华,等. 证据推理理论及其应用[J]. 自动化学报,2021, 47(5): 970-984. [8] ANTONI J, XIN G, HAMZAOUI N. Fast computation of the spectral correlation[J]. Mechanical Systems and Signal Processing, 2017, 92: 248-277. doi: 10.1016/j.ymssp.2017.01.011 [9] DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping[J]. The Annals of Mathematical Statistics, 1967, 38(2): 325-339. doi: 10.1214/aoms/1177698950 [10] SHAFER G. A mathematical theory of evidence[M]. Princeton: Princeton University Press, 1976:39-40. [11] ZHANG H P, DENG Y. Engine fault diagnosis based on sensor data fusion considering information quality and evidence theory[J]. Advances in Mechanical Engineering, 2018, 10(11): 1687814018809184. [12] WANG S N, TANG Y C. An improved approach for generation of a basic probability assignment in the evidence theory based on Gaussian distribution[J]. Arabian Journal for Science and Engineering, 2022, 47(2): 1595-1607. doi: 10.1007/s13369-021-06011-w -