Study on Modified Diffusion Layer Wall Condensation Model Considering Suction Effect
-
摘要: 蒸汽壁面冷凝是冷却剂丧失事故(LOCA)下非能动热量导出的重要方式,壁面冷凝模型的准确性直接影响分析结果的有效性。本文基于计算流体动力学(CFD)程序构建了扩散层壁面冷凝模型,选取JERICHO冷凝实验对模型的预测效果进行了评估,结果表明,低冷凝速率下扩散层壁面冷凝模型能准确预测蒸汽壁面冷凝速率,然而随着蒸汽冷凝速率增加,模型整体低估了壁面冷凝速率。针对这一问题,考虑了抽吸效应和混合气体密度沿壁面法向分布的非均匀性,提出了考虑轻质气体影响的抽吸效应修正关系,对冷凝源项进行了改进,构建了新的扩散层壁面冷凝模型。基于COPAIN实验对改进后模型的预测结果进行了验证,模拟得到的热流密度与实验数据吻合较好,相对误差在±20%以内,证明了改进后的扩散层壁面冷凝模型的准确性。Abstract: Steam wall condensation is an important passive heat removal method under loss of coolant accident (LOCA). The accuracy of the wall condensation model directly affects the validity of the analysis results. Based on the computational fluid dynamics (CFD) code, a diffusion layer wall condensation model was constructed in this paper. The JERICHO experiment was selected to evaluate the model. The results show that the diffusion layer wall condensation model can accurately predict the steam wall condensation rate at low condensation rate conditions. However, the model underestimates the wall condensation rate as the steam condensation rate increases. To address this problem, the suction effect and the non-uniformity distribution of the mixed gas density along the wall-normal direction are considered. A correction relationship for the suction effect considering the influence of light gas is proposed, the condensation source term is modified, and a new diffusion layer wall condensation model is constructed. The prediction results of the modified model are verified based on the COPAIN experiment. The simulated heat flux density is in good agreement with the experimental data, and the relative error is within ±15%, which proves the accuracy of the modified diffusion layer wall condensation model.
-
Key words:
- Wall condensation model /
- Mixed gas /
- Diffusion layer /
- Containment
-
表 1 JERICHO壁面冷凝实验3种工况边界条件
Table 1. Boundary Conditions for JERICHO Wall Condensation Experiment in Three Conditions
工况 冷凝壁面
长度/mwnc 氦气占不凝性
气体的质量
份额压力/
MPa壁面过
冷度/K冷凝传热
系数测量值/
(W·m−2·K−1)1 1.0 0.30 0 0.3 40.00 408.98 2 0.20 0.2 0.2 10.09 1835.10 3 0.20 0.2 0.3 20.03 1933.84 表 2 COPAIN蒸汽壁面冷凝实验边界条件
Table 2. Boundary Conditions for COPAIN Steam Wall Condensation Experiment
工况 入口速度/(m·s−1) 出口
压力/MPa入口气体
温度/K壁面
温度/K入口不凝性气体质量分数 P0284 0.32 0.659 436.35 371.96 0.297 P0344 0.30 0.121 344.03 322.00 0.864 P0441 3.00 0.102 353.20 307.40 0.767 P0443 1.00 0.102 352.30 300.10 0.772 P0444 0.50 0.102 351.50 299.70 0.773 表 3 网格划分方案
Table 3. Mesh Division Scheme
网格划分
方案近壁第一层网格
高度$ \Delta\mathit{y} $/m网格数量 1 0.0100 150(z)×29(y) 2 0.0010 150(z)×47(y) 3 0.0005 180(z)×55(y) 4 0.0001 200(z)×65(y) -
[1] XING J, SONG D Y, WU Y X. HPR1000: advanced pressurized water reactor with active and passive safety[J]. Engineering, 2016, 2(1): 79-87. doi: 10.1016/J.ENG.2016.01.017 [2] MARTÍN-VALDEPEÑAS J M, JIMÉNEZ M A, MARTÍN-FUERTES F, et al. Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code[J]. Heat and Mass Transfer, 2005, 41(11): 961-976. doi: 10.1007/s00231-004-0606-5 [3] BUCCI M, AMBROSINI W, FORGIONE N. Experimental and computational analysis of steam condensation in the presence of air and helium[J]. Nuclear Technology, 2013, 181(1): 115-132. doi: 10.13182/NT13-A15761 [4] ZSCHAECK G, FRANK T, BURNS A D. CFD modelling and validation of wall condensation in the presence of non-condensable gases[J]. Nuclear Engineering and Design, 2014, 279: 137-146. doi: 10.1016/j.nucengdes.2014.03.007 [5] DEHBI A, JANASZ F, BELL B. Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach[J]. Nuclear Engineering and Design, 2013, 258: 199-210. doi: 10.1016/j.nucengdes.2013.02.002 [6] BIRD B R, STEWART W E, LIGHTFOOT E N. Transport Phenomena[M]. 2nd ed. New York, USA: John Wiley & Sons Inc. , 2002:543-551. [7] BIAN H Z, SUN Z G, ZHANG N, et al. A new modified diffusion boundary layer steam condensation model in the presence of air under natural convection conditions[J]. International Journal of Thermal Sciences, 2019, 145: 105948. doi: 10.1016/j.ijthermalsci.2019.05.004 [8] WANG D, CAO X. Numerical analysis of different break direction effect on hydrogen behavior in containment during a hypothetical LOCA[J]. Annals of Nuclear Energy, 2017, 110: 856-864. doi: 10.1016/j.anucene.2017.06.054 [9] JIANG X W, STUDER E, KUDRIAKOV S. A simplified model of passive containment cooling system in a CFD code[J]. Nuclear Engineering and Design, 2013, 262: 579-588. doi: 10.1016/j.nucengdes.2013.06.010 [10] SHIH T H, LIOU W W, SHABBIR A. A new k- ϵ eddy viscosity model for high reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227-238. [11] LI Y B, ZHANG H, XIAO J J, et al. Numerical investigation of natural convection inside the containment with recovering passive containment cooling system using GASFLOW-MPI[J]. Annals of Nuclear Energy, 2018, 114: 1-10. doi: 10.1016/j.anucene.2017.11.047 [12] BENTEBOULA S, DABBENE F. Modeling of wall condensation in the presence of noncondensable light gas[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119313. doi: 10.1016/j.ijheatmasstransfer.2020.119313 [13] PARK I W, YANG S H, LEE Y G. Degradation of condensation heat transfer on a vertical cylinder by a light noncondensable gas mixed with air-steam mixtures[J]. International Communications in Heat and Mass Transfer, 2022, 130: 105779. doi: 10.1016/j.icheatmasstransfer.2021.105779 [14] BUCCI M. Experimental and computational analysis of condensation phenomena for the thermal-hydraulic analysis of LWRs containments[D]. Pisa, Italy: University of Pisa, 2009. -