高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑抽吸效应修正的扩散层壁面冷凝模型研究

朱治州 佟立丽 曹学武

朱治州, 佟立丽, 曹学武. 考虑抽吸效应修正的扩散层壁面冷凝模型研究[J]. 核动力工程, 2025, 46(S1): 95-102. doi: 10.13832/j.jnpe.2025.S1.0095
引用本文: 朱治州, 佟立丽, 曹学武. 考虑抽吸效应修正的扩散层壁面冷凝模型研究[J]. 核动力工程, 2025, 46(S1): 95-102. doi: 10.13832/j.jnpe.2025.S1.0095
Zhu Zhizhou, Tong Lili, Cao Xuewu. Study on Modified Diffusion Layer Wall Condensation Model Considering Suction Effect[J]. Nuclear Power Engineering, 2025, 46(S1): 95-102. doi: 10.13832/j.jnpe.2025.S1.0095
Citation: Zhu Zhizhou, Tong Lili, Cao Xuewu. Study on Modified Diffusion Layer Wall Condensation Model Considering Suction Effect[J]. Nuclear Power Engineering, 2025, 46(S1): 95-102. doi: 10.13832/j.jnpe.2025.S1.0095

考虑抽吸效应修正的扩散层壁面冷凝模型研究

doi: 10.13832/j.jnpe.2025.S1.0095
基金项目: 中核集团领创科研项目(20220801PL)
详细信息
    作者简介:

    朱治州(2000—),男,博士研究生,现主要从事核反应堆安全分析方向的研究,E-mail: zhuzhizhou@sjtu.edu.cn

    通讯作者:

    曹学武,E-mail: caoxuewu@sjtu.edu.cn

  • 中图分类号: TL331

Study on Modified Diffusion Layer Wall Condensation Model Considering Suction Effect

  • 摘要: 蒸汽壁面冷凝是冷却剂丧失事故(LOCA)下非能动热量导出的重要方式,壁面冷凝模型的准确性直接影响分析结果的有效性。本文基于计算流体动力学(CFD)程序构建了扩散层壁面冷凝模型,选取JERICHO冷凝实验对模型的预测效果进行了评估,结果表明,低冷凝速率下扩散层壁面冷凝模型能准确预测蒸汽壁面冷凝速率,然而随着蒸汽冷凝速率增加,模型整体低估了壁面冷凝速率。针对这一问题,考虑了抽吸效应和混合气体密度沿壁面法向分布的非均匀性,提出了考虑轻质气体影响的抽吸效应修正关系,对冷凝源项进行了改进,构建了新的扩散层壁面冷凝模型。基于COPAIN实验对改进后模型的预测结果进行了验证,模拟得到的热流密度与实验数据吻合较好,相对误差在±20%以内,证明了改进后的扩散层壁面冷凝模型的准确性。

     

  • 图  1  含不凝性气体扩散层壁面冷凝模型示意图

    Ti—冷凝气液界面温度;Tw—冷凝壁面温度;Pv,sat(Ti)—冷凝气液界面温度对应的饱和压力。

    Figure  1.  Schematic Diagram of Diffusion Layer Wall Condensation Model with Non-condensable Gas

    图  2  JERICHO冷凝实验装置示意图 mm

    Figure  2.  Schematic Diagram of JERICHO Condensation Experimental Facility

    图  3  JERICHO装置二维模型

    Figure  3.  Two Dimensional Geometric Model of JERICHO Facility

    图  4  JERICHO实验网格敏感性分析结果

    Figure  4.  Mesh Sensitivity Analysis Results of JERICHO Experiment

    图  5  JERICHO空气-水蒸气-氦气壁面冷凝实验评估结果

    Figure  5.  Evaluation Results of Air-Steam-Helium Wall Condensation in JERICHO Experiment

    图  6  冷凝壁面附近混合气体总密度沿壁面法向分布示意图

    Figure  6.  Schematic Diagram of Total Density Distribution of the Mixed Gas near the Condensing Wall along the Normal Direction

    图  7  改进模型预测结果与JERICHO实验值对比

    Figure  7.  Comparison between the Predicted Results of the Improved Model and the JERICHO Experimental Data

    图  8  壁面冷凝计算中应用于扩散系数的θcθB的对应关系

    Figure  8.  Correspondence between θc and θB Applied to Diffusion Coefficient in Analysis of Wall Condensation

    图  9  COPAIN实验装置示意图

    Figure  9.  Schematic Diagram of COPAIN Facility

    图  10  COPAIN实验网格敏感性分析结果

    Figure  10.  Mesh Sensitivity Analysis Results of COPAIN Experiment

    图  11  改进后扩散层壁面冷凝模型模型模拟结果与COPAIN实验值对比

    Figure  11.  Comparison between the Predicted Results of the Improved Diffusion Layer Wall Condensation Model and COPAIN Experimental Data

    表  1  JERICHO壁面冷凝实验3种工况边界条件

    Table  1.   Boundary Conditions for JERICHO Wall Condensation Experiment in Three Conditions

    工况 冷凝壁面
    长度/m
    wnc 氦气占不凝性
    气体的质量
    份额
    压力/
    MPa
    壁面过
    冷度/K
    冷凝传热
    系数测量值/
    (W·m−2·K−1
    1 1.0 0.30 0 0.3 40.00 408.98
    2 0.20 0.2 0.2 10.09 1835.10
    3 0.20 0.2 0.3 20.03 1933.84
    下载: 导出CSV

    表  2  COPAIN蒸汽壁面冷凝实验边界条件

    Table  2.   Boundary Conditions for COPAIN Steam Wall Condensation Experiment

    工况入口速度/(m·s−1)出口
    压力/MPa
    入口气体
    温度/K
    壁面
    温度/K
    入口不凝性气体质量分数
    P02840.320.659436.35371.960.297
    P03440.300.121344.03322.000.864
    P04413.000.102353.20307.400.767
    P04431.000.102352.30300.100.772
    P04440.500.102351.50299.700.773
    下载: 导出CSV

    表  3  网格划分方案

    Table  3.   Mesh Division Scheme

    网格划分
    方案
    近壁第一层网格
    高度$ \Delta\mathit{y} $/m
    网格数量
    1 0.0100 150(z)×29(y)
    2 0.0010 150(z)×47(y)
    3 0.0005 180(z)×55(y)
    4 0.0001 200(z)×65(y)
    下载: 导出CSV
  • [1] XING J, SONG D Y, WU Y X. HPR1000: advanced pressurized water reactor with active and passive safety[J]. Engineering, 2016, 2(1): 79-87. doi: 10.1016/J.ENG.2016.01.017
    [2] MARTÍN-VALDEPEÑAS J M, JIMÉNEZ M A, MARTÍN-FUERTES F, et al. Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code[J]. Heat and Mass Transfer, 2005, 41(11): 961-976. doi: 10.1007/s00231-004-0606-5
    [3] BUCCI M, AMBROSINI W, FORGIONE N. Experimental and computational analysis of steam condensation in the presence of air and helium[J]. Nuclear Technology, 2013, 181(1): 115-132. doi: 10.13182/NT13-A15761
    [4] ZSCHAECK G, FRANK T, BURNS A D. CFD modelling and validation of wall condensation in the presence of non-condensable gases[J]. Nuclear Engineering and Design, 2014, 279: 137-146. doi: 10.1016/j.nucengdes.2014.03.007
    [5] DEHBI A, JANASZ F, BELL B. Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach[J]. Nuclear Engineering and Design, 2013, 258: 199-210. doi: 10.1016/j.nucengdes.2013.02.002
    [6] BIRD B R, STEWART W E, LIGHTFOOT E N. Transport Phenomena[M]. 2nd ed. New York, USA: John Wiley & Sons Inc. , 2002:543-551.
    [7] BIAN H Z, SUN Z G, ZHANG N, et al. A new modified diffusion boundary layer steam condensation model in the presence of air under natural convection conditions[J]. International Journal of Thermal Sciences, 2019, 145: 105948. doi: 10.1016/j.ijthermalsci.2019.05.004
    [8] WANG D, CAO X. Numerical analysis of different break direction effect on hydrogen behavior in containment during a hypothetical LOCA[J]. Annals of Nuclear Energy, 2017, 110: 856-864. doi: 10.1016/j.anucene.2017.06.054
    [9] JIANG X W, STUDER E, KUDRIAKOV S. A simplified model of passive containment cooling system in a CFD code[J]. Nuclear Engineering and Design, 2013, 262: 579-588. doi: 10.1016/j.nucengdes.2013.06.010
    [10] SHIH T H, LIOU W W, SHABBIR A. A new k- ϵ eddy viscosity model for high reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227-238.
    [11] LI Y B, ZHANG H, XIAO J J, et al. Numerical investigation of natural convection inside the containment with recovering passive containment cooling system using GASFLOW-MPI[J]. Annals of Nuclear Energy, 2018, 114: 1-10. doi: 10.1016/j.anucene.2017.11.047
    [12] BENTEBOULA S, DABBENE F. Modeling of wall condensation in the presence of noncondensable light gas[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119313. doi: 10.1016/j.ijheatmasstransfer.2020.119313
    [13] PARK I W, YANG S H, LEE Y G. Degradation of condensation heat transfer on a vertical cylinder by a light noncondensable gas mixed with air-steam mixtures[J]. International Communications in Heat and Mass Transfer, 2022, 130: 105779. doi: 10.1016/j.icheatmasstransfer.2021.105779
    [14] BUCCI M. Experimental and computational analysis of condensation phenomena for the thermal-hydraulic analysis of LWRs containments[D]. Pisa, Italy: University of Pisa, 2009.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-15
  • 修回日期:  2025-04-15
  • 刊出日期:  2025-07-09

目录

    /

    返回文章
    返回