Design and Analysis of Integrated Heat Transfer Test Facility for Gas-Cooled Microreactor Core Components
-
摘要: 针对气冷微堆堆芯组件传热综合试验需求,开展了试验台架的详细设计与分析工作。研究内容涵盖试验台架设计原则、关键参数确定、试验段结构设计及启动过程优化等方面。采用数值模拟与预分析方法,对试验台架启动过程及试验段设计方案进行了系统研究。结果表明:试验台架启动过程控制合理,试验段结构设计满足技术要求,可实现氦气风机入口温度50℃、堆芯入口温度489℃、堆芯出口温度750℃的设计指标,并保持试验回路入口氦气压力稳定在1.6 MPa。石墨温度的初步试验结果与模拟结果对比显示良好的一致性,验证了计算模型的可靠性。研究结果不仅为气冷微堆堆芯组件传热综合试验提供了可行的验证试验平台,也为后续高温氦气设备部件的研发验证奠定了重要基础。Abstract: In response to the requirements for comprehensive heat transfer testing of gas-cooled microreactor core components, this study conducted detailed design and analysis of the test facility. The research encompassed the design principles of the test facility, determination of key parameters, structural design of the test section, and optimization of the startup process. Numerical simulation and pre-analysis methods were employed to systematically investigate the startup process of the test facility and the design scheme of the test section. The results indicate that the startup process control of the test facility is reasonable, and the structural design of the test section meets technical requirements, achieving design targets of 50℃ at the helium fan inlet, 489℃ at the core inlet, and 750℃ at the core outlet, while maintaining a stable helium pressure of 1.6 MPa at the test loop inlet. The comparison between experimental data and simulation results for graphite temperature demonstrates good consistency, validating the reliability of the computational model. The research results not only provide a feasible validation test platform for comprehensive heat transfer testing of gas-cooled microreactor core components, but also lay an important foundation for the subsequent development and verification of high-temperature helium equipment components.
-
表 1 试验台架主要技术参数
Table 1. Key Technical Parameters of the Test Facility
技术指标 数值及描述 试验工质 氦气 燃料组件材料 等静压石墨 燃料组件结构 六边形棱柱状 试验系统设计压力/MPa 3.0 试验台架设计温度/℃ 550 试验系统设计流量/(kg·s−1) 1.2 电预热器功率/kW 520 主氦风机额定转速/(r·min−1) 43000 主氦风机电机功率/kW 200 主氦风机额定流量/(kg·s−1) 1.2 主氦风机进口工作温度/℃ 50 主氦风机压升/kPa 200 空冷器换热量/MW 1.4 -
[1] 吴宗鑫,张作义. 先进核能系统和高温气冷堆[M]. 北京: 清华大学出版社,2004: 1-2. [2] U. S. Department of Energy. A technology roadmap for generation IV nuclear energy systems: GIF-002-00[R]. Washington: U. S. Department of Energy, 2002. [3] International Atomic Energy Agency. Small modular reactor: IAEA/PAT/008[R]. Vienna: IAEA, 2024. [4] 张成龙,堵树宏,刘国明,等. 小型模块化超级安全气冷堆中子学特性研究[J]. 核动力工程,2019, 40(6): 13-19. [5] 张成龙,刘国明,贺楷,等. 气冷微堆燃料设计的中子学特性影响研究[J]. 原子能科学技术,2021, 55(11): 2062-2069. doi: 10.7538/yzk.2021.youxian.0026 [6] 张成龙,袁媛,刘国明,等. 棱柱式超级安全气冷堆堆芯物理特性研究[J]. 原子能科学技术,2023, 57(1): 156-164. doi: 10.7538/yzk.2022.youxian.0062 [7] U. S. Nuclear Regulatory Commission. Next generation nuclear plant phenomena identification and ranking tables (PIRTs): NUREG/CR-6944[R]. Washington: U. S. Nuclear Regulatory Commission, 2008. [8] 陈福冰,陈志鹏,郑艳华,等. 现象识别与分级表在高温气冷堆程序验证中的应用[J]. 原子能科学技术,2015, 49(S1): 415-419. [9] GOU F, CHEN F B, DONG Y J. Preliminary phenomena identification and ranking tables on the subject of the high temperature gas-cooled reactor-pebble bed module thermal fluids and accident analysis[J]. Nuclear Engineering and Design, 2018, 332: 11-21. [10] 刘吉,杨明德,党杰,等. 大型氦气工程试验回路管路系统泄漏检测技术研究[J]. 核科学与工程,2015, 35(2): 289-294. doi: 10.3969/j.issn.0258-0918.2015.02.016 -