Study on the Microstructure and Nano-hardness Evolution of FeCrAl Alloy under Ion Irradiation
-
摘要: FeCrAl合金作为重要的耐事故堆芯包壳候选材料,需深入掌握其在辐照条件下的改性机理。采用Au+离子在室温与400℃条件下对新型Fe13Cr4.5Al不锈钢开展了辐照实验,系统表征了FeCrAl不锈钢辐照前后表面区域的相结构、表面织构取向、辐照前后缺陷、析出相及非晶化等微观结构与显微硬度,分析了离子辐照下FeCrAl不锈钢辐照缺陷、析出相、硬化效应的关联行为及损伤机制,随着辐照剂量从5 dpa增加到20 dpa,辐照诱导产生的位错存在“点-环-线”的演化过程,1/2<111>的密度随着辐照剂量的增加而增加,辐照后FeCrAl合金的硬度也同步增加并达到饱和,位错环在硬化中起主导作用。Abstract: As an important candidate material for accident-resistant core cladding, it is necessary to deeply understand the modification mechanism of FeCrAl alloy under irradiation conditions. Au+ ions were used to irradiate the new Fe13Cr4.5Al alloy at room temperature and400°C. The phase structure, surface texture orientation, defects before and after irradiation, precipitated phase, amorphization and other microstructure and microhardness of the surface region of FeCrAl stainless steel before and after irradiation were systematically characterized. The correlation behavior and damage mechanism of irradiation defects, precipitated phase and hardening effect of FeCrAl stainless steel under ion irradiation were analyzed. With the increase of irradiation dose from 5 dpa to 20 dpa, the dislocation induced by irradiation has a "point-loop-line" evolution process. The density of 1/2<111> increases with the increase of irradiation dose, and the hardness of FeCrAl alloy also increases synchronously and reaches saturation after irradiation. The dislocation loop plays a leading role in hardening.
-
Key words:
- FeCrAl alloy /
- Ion irradiation /
- Dislocation loops /
- Nanohardness /
- Irradiation hardening
-
表 1 样品辐照前后整体元素含量EDS表征
Table 1. EDS Characterization of Overall Element Content of Samples before and after Irradiation
元素 辐照前质量百分比/% 20 dpa辐照后质量百分比/% C 5.67 8.00 Al 3.99 3.89 Cr 12.98 12.55 Fe 77.36 75.57 总量 100.00 100.00 表 2 Fe13Cr4.5Al样品划痕处在400℃下辐照剂量为10 dpa时的元素占比
Table 2. Element Proportion of Fe13Cr4.5Al Sample Scratch at 400℃with a Dose of 10 dpa
元素 C O Al Cr Fe 总量 质量百分数/% 5.66 1.89 5.02 12.61 74.83 100.00 原子百分比/% 19.99 5.02 7.88 10.28 56.83 100.00 表 3 室温与400℃下Fe13Cr4.5Al的屈服强度$ \sigma $转化成维氏硬度HV和纳米压痕硬度HO
Table 3. Conversion of Yield Strength (σ) to Vickers Hardness (HV) and Nanoindentation Hardness (HO) for Fe13Cr4.5Al at Room Temperature and 400℃
温度
条件辐照
剂量σ /MPa HV/ (N·mm−2) HO①/GPa 室温 5 dpa 80 26 0.32 10 dpa 133 43 0.53 20 dpa 101 33 0.41 400℃ 5 dpa 81 26 0.33 10 dpa 143 47 0.58 20 dpa 98 32 0.40 注:①HO=HV/81。 -
[1] 刘俊凯,张新虎,恽迪. 事故容错燃料包壳候选材料的研究现状及展望[J]. 材料导报,2018, 32(11): 1757-1778. doi: 10.11896/j.issn.1005-023X.2018.11.001 [2] 李紫祎,王晓敏,王凯,等. 耐事故燃料研发进展及技术发展趋势[J]. 核动力工程,2024, 45(5): 155-164. [3] 邱国兴,韦旭立,缪德军,等. 核级FeCrAl包壳材料研究进展[J]. 钢铁研究学报,2022, 34(9): 884-894. [4] GAMBLE K A, BARANI T, PIZZOCRI D, et al. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions[J]. Journal of Nuclear Materials, 2017, 491: 55-66. doi: 10.1016/j.jnucmat.2017.04.039 [5] SWEET R T, GEORGE N M, MALDONADO G I, et al. Fuel performance simulation of iron-chrome-aluminum (FeCrAl) cladding during steady-state LWR operation[J]. Nuclear Engineering and Design, 2018, 328: 10-26. doi: 10.1016/j.nucengdes.2017.11.043 [6] 龙弟均,徐海波,孙永铎,等. FeCrAl-ODS钢的辐照位错环演变及其辐照硬化效应[J]. 粉末冶金工业,2024, 34(3): 28-33. [7] EDMONDSON P D, BRIGGS S A, YAMAMOTO Y, et al. Irradiation-enhanced α′ precipitation in model FeCrAl alloys[J]. Scripta Materialia, 2016, 116: 112-116. doi: 10.1016/j.scriptamat.2016.02.002 [8] 雷阳,张海生,毛建军,等. 中子辐照对耐事故燃料FeCrAl合金力学性能的影响研究[J]. 核动力工程,2022, 43(1): 97-101. [9] FIELD K G, HU X X, LITTRELL K C, et al. Radiation tolerance of neutron-irradiated model Fe–Cr–Al alloys[J]. Journal of Nuclear Materials, 2015, 465: 746-755. doi: 10.1016/j.jnucmat.2015.06.023 [10] CHEN C L, RICHTER A, KÖGLER R. The effect of dual Fe+/He+ ion beam irradiation on microstructural changes in FeCrAl ODS alloys[J]. Journal of Alloys & Compounds, 2014, 586(S1): S173-S179. [11] STOLLER R E, ZINKLE S J. On the relationship between uniaxial yield strength and resolved shear stress in polycrystalline materials[J]. Journal of Nuclear Materials, 2000, 283-287: 349-352. doi: 10.1016/S0022-3115(00)00378-0 [12] YANG Y T, ZHANG C H, DING Z N, et al. A correlation between micro- and nano-indentation on materials irradiated by high-energy heavy ions[J]. Journal of Nuclear Materials, 2018, 498: 129-136. doi: 10.1016/j.jnucmat.2017.10.025 [13] ZHOU X, WANG H, GUO L P, et al. Effect of niobium content on irradiation microstructure and hardening in FeCrAl-based alloys[J]. Journal of Materials Science & Technology, 2021, 95: 181-192. -