高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FeCrAl合金离子辐照下微观结构与纳米硬度演化研究

裴静远 陈寰 张瑞谦

裴静远, 陈寰, 张瑞谦. FeCrAl合金离子辐照下微观结构与纳米硬度演化研究[J]. 核动力工程, 2025, 46(S1): 145-157. doi: 10.13832/j.jnpe.2025.S1.0145
引用本文: 裴静远, 陈寰, 张瑞谦. FeCrAl合金离子辐照下微观结构与纳米硬度演化研究[J]. 核动力工程, 2025, 46(S1): 145-157. doi: 10.13832/j.jnpe.2025.S1.0145
Pei Jingyuan, Chen Huan, Zhang Ruiqian. Study on the Microstructure and Nano-hardness Evolution of FeCrAl Alloy under Ion Irradiation[J]. Nuclear Power Engineering, 2025, 46(S1): 145-157. doi: 10.13832/j.jnpe.2025.S1.0145
Citation: Pei Jingyuan, Chen Huan, Zhang Ruiqian. Study on the Microstructure and Nano-hardness Evolution of FeCrAl Alloy under Ion Irradiation[J]. Nuclear Power Engineering, 2025, 46(S1): 145-157. doi: 10.13832/j.jnpe.2025.S1.0145

FeCrAl合金离子辐照下微观结构与纳米硬度演化研究

doi: 10.13832/j.jnpe.2025.S1.0145
基金项目: 科技部重点研发项目(2019YFB1901002)
详细信息
    作者简介:

    裴静远(1990—),男,博士,现主要从事材料微观表征方面的研究,E-mail: 770277261@qq.com

  • 中图分类号: TL334

Study on the Microstructure and Nano-hardness Evolution of FeCrAl Alloy under Ion Irradiation

  • 摘要: FeCrAl合金作为重要的耐事故堆芯包壳候选材料,需深入掌握其在辐照条件下的改性机理。采用Au+离子在室温与400℃条件下对新型Fe13Cr4.5Al不锈钢开展了辐照实验,系统表征了FeCrAl不锈钢辐照前后表面区域的相结构、表面织构取向、辐照前后缺陷、析出相及非晶化等微观结构与显微硬度,分析了离子辐照下FeCrAl不锈钢辐照缺陷、析出相、硬化效应的关联行为及损伤机制,随着辐照剂量从5 dpa增加到20 dpa,辐照诱导产生的位错存在“点-环-线”的演化过程,1/2<111>的密度随着辐照剂量的增加而增加,辐照后FeCrAl合金的硬度也同步增加并达到饱和,位错环在硬化中起主导作用。

     

  • 图  1  用线切割机、普通研磨抛光和精细振动抛光后制备的样品

    Figure  1.  Sample Prepared by Wire Cutting Machine, Ordinary Grinding and Polishing and Fine Vibration Polishing

    图  2  Fe13Cr4.5Al样品辐照前后的XRD图像

    2θ—衍射角度。

    Figure  2.  XRD Images of Fe13Cr4.5Al Samples before and after Irradiation

    图  3  Fe13Cr4.5Al样品在室温,不同辐照剂量下的SEM图像

    Figure  3.  SEM Images of Fe13Cr4.5Al Samples Irradiated with Different Doses at Room Temperature

    图  4  Fe13Cr4.5Al样品在400℃不同剂量辐照后的SEM图像

    Figure  4.  SEM Images of Fe13Cr4.5Al Alloy after Irradiation with Different Doses at 400°C

    图  5  Fe13Cr4.5Al样品划痕处在400℃下辐照剂量为10 dpa的EDS图像

    Figure  5.  EDS Images of Fe13Cr4.5Al Sample Scratch at 400℃ with a Dose of 10 dpa

    图  6  400℃不同辐照剂量下Fe13Cr4.5Al的EBSD图像及晶粒大小分布

    晶界图中红线表示高角晶界(HAGBs)取向角大于15°;黑线表示低角晶界(LAGBs)取向角小于15°。

    Figure  6.  EBSD Images and Grain Size Distribution of Fe13Cr4.5Al under Different Irradiation Doses at 400℃

    图  7  未辐照的FeCrAl合金的TEM图像

    Figure  7.  TEM Images of Unirradiated FeCrAl Alloy

    图  8  Fe13Cr4.5Al在辐照剂量为5 dpa下的TEM形貌图

    白色箭头代表不同的衍射矢量g,下同。

    Figure  8.  TEM Morphology of Fe13Cr4.5Al Irradiated to 5 dpa

    图  9  Fe13Cr4.5Al在辐照剂量为10 dpa下的TEM形貌图

    Figure  9.  TEM Morphology of Fe13Cr4.5Al Irradiated to 10 dpa

    图  10  Fe13Cr4.5Al在辐照剂量为20 dpa下的TEM形貌图

    Figure  10.  TEM Morphology of Fe13Cr4.5Al Irradiated to 20 dpa

    图  11  Fe13Cr4.5Al合金在室温和400℃下辐照至5、10、20 dpa的TEM图像

    白色箭头代表衍射矢量g=011。

    Figure  11.  TEM Images of Fe13Cr4.5Al Alloy Irradiated to 5, 10, 20 dpa at Room Temperature and 400℃

    图  12  Fe13Cr4.5Al未辐照晶界的HRTEM及线扫描图像

    Figure  12.  HRTEM and Line Scan Images of Unirradiated Grain Boundaries of Fe13Cr4.5Al

    图  13  Fe13Cr4.5Al在20 dpa下的HRTEM及面扫描图像

    Figure  13.  HRTEM and EDS-mapping Images of Fe13Cr4.5Al Irradiated to 20 dpa

    图  14  Fe13Cr4.5Al纳米压痕(210~270 nm)硬度随辐照剂量的变化曲线

    误差棒为标准偏差,下同。

    Figure  14.  Variation Curve of Hardness of Fe13Cr4.5Al Nanoindentation (210-270 nm) with Irridiation Dose

    图  15  Fe13Cr4.5Al纳米压痕硬度随深度分布

    Figure  15.  Distribution of Nanoindentation Hardness of Fe13Cr 4.5Al with Depth

    图  16  Fe13Cr4.5Al弹性模量随深度分布

    Figure  16.  Distribution of Elastic Modulus of Fe13Cr4.5Al with Depth

    图  17  不同温度与辐照剂量下位错环的数密度和平均尺寸

    Figure  17.  Number Density and Average Size of Dislocation Loops under Different Temperatures and Irradiation Doses

    图  18  不同类型的位错环

    Figure  18.  Different Types of Dislocation Loops

    图  19  不同辐照剂量与温度下的1/2<111>和<100>位错环数密度和平均尺寸

    插图为1/2<111>位错环占总位错环比例。

    Figure  19.  Number Density and Average Size of 1/2 <111> and <100> Dislocation Loops under Differernt Irridiation Doses and Temperatures

    图  20  位错环与位错线的反应图像

    Figure  20.  Reaction Images of Dislocation Loops and Dislocation Lines

    图  21  5 dpa,10 dpa到20 dpa样品辐照缺陷点-环-线的变化特征和硬化情况

    Figure  21.  Variation Characteristics and Hardening of Irradiation Defect Point-loop-line of Samples at 5 dpa, 10 dpa and 20 dpa

    表  1  样品辐照前后整体元素含量EDS表征

    Table  1.   EDS Characterization of Overall Element Content of Samples before and after Irradiation

    元素辐照前质量百分比/%20 dpa辐照后质量百分比/%
    C5.678.00
    Al3.993.89
    Cr12.9812.55
    Fe77.3675.57
    总量100.00100.00
    下载: 导出CSV

    表  2  Fe13Cr4.5Al样品划痕处在400℃下辐照剂量为10 dpa时的元素占比

    Table  2.   Element Proportion of Fe13Cr4.5Al Sample Scratch at 400℃with a Dose of 10 dpa

    元素COAlCrFe总量
    质量百分数/%5.661.895.0212.6174.83100.00
    原子百分比/%19.995.027.8810.2856.83100.00
    下载: 导出CSV

    表  3  室温与400℃下Fe13Cr4.5Al的屈服强度$ \sigma $转化成维氏硬度HV和纳米压痕硬度HO

    Table  3.   Conversion of Yield Strength (σ) to Vickers Hardness (HV) and Nanoindentation Hardness (HO) for Fe13Cr4.5Al at Room Temperature and 400℃

    温度
    条件
    辐照
    剂量
    σ /MPa HV/ (N·mm−2) HO/GPa
    室温 5 dpa 80 26 0.32
    10 dpa 133 43 0.53
    20 dpa 101 33 0.41
    400℃ 5 dpa 81 26 0.33
    10 dpa 143 47 0.58
    20 dpa 98 32 0.40
      注:①HO=HV/81。
    下载: 导出CSV
  • [1] 刘俊凯,张新虎,恽迪. 事故容错燃料包壳候选材料的研究现状及展望[J]. 材料导报,2018, 32(11): 1757-1778. doi: 10.11896/j.issn.1005-023X.2018.11.001
    [2] 李紫祎,王晓敏,王凯,等. 耐事故燃料研发进展及技术发展趋势[J]. 核动力工程,2024, 45(5): 155-164.
    [3] 邱国兴,韦旭立,缪德军,等. 核级FeCrAl包壳材料研究进展[J]. 钢铁研究学报,2022, 34(9): 884-894.
    [4] GAMBLE K A, BARANI T, PIZZOCRI D, et al. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions[J]. Journal of Nuclear Materials, 2017, 491: 55-66. doi: 10.1016/j.jnucmat.2017.04.039
    [5] SWEET R T, GEORGE N M, MALDONADO G I, et al. Fuel performance simulation of iron-chrome-aluminum (FeCrAl) cladding during steady-state LWR operation[J]. Nuclear Engineering and Design, 2018, 328: 10-26. doi: 10.1016/j.nucengdes.2017.11.043
    [6] 龙弟均,徐海波,孙永铎,等. FeCrAl-ODS钢的辐照位错环演变及其辐照硬化效应[J]. 粉末冶金工业,2024, 34(3): 28-33.
    [7] EDMONDSON P D, BRIGGS S A, YAMAMOTO Y, et al. Irradiation-enhanced α′ precipitation in model FeCrAl alloys[J]. Scripta Materialia, 2016, 116: 112-116. doi: 10.1016/j.scriptamat.2016.02.002
    [8] 雷阳,张海生,毛建军,等. 中子辐照对耐事故燃料FeCrAl合金力学性能的影响研究[J]. 核动力工程,2022, 43(1): 97-101.
    [9] FIELD K G, HU X X, LITTRELL K C, et al. Radiation tolerance of neutron-irradiated model Fe–Cr–Al alloys[J]. Journal of Nuclear Materials, 2015, 465: 746-755. doi: 10.1016/j.jnucmat.2015.06.023
    [10] CHEN C L, RICHTER A, KÖGLER R. The effect of dual Fe+/He+ ion beam irradiation on microstructural changes in FeCrAl ODS alloys[J]. Journal of Alloys & Compounds, 2014, 586(S1): S173-S179.
    [11] STOLLER R E, ZINKLE S J. On the relationship between uniaxial yield strength and resolved shear stress in polycrystalline materials[J]. Journal of Nuclear Materials, 2000, 283-287: 349-352. doi: 10.1016/S0022-3115(00)00378-0
    [12] YANG Y T, ZHANG C H, DING Z N, et al. A correlation between micro- and nano-indentation on materials irradiated by high-energy heavy ions[J]. Journal of Nuclear Materials, 2018, 498: 129-136. doi: 10.1016/j.jnucmat.2017.10.025
    [13] ZHOU X, WANG H, GUO L P, et al. Effect of niobium content on irradiation microstructure and hardening in FeCrAl-based alloys[J]. Journal of Materials Science & Technology, 2021, 95: 181-192.
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  4
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-18
  • 修回日期:  2025-03-20
  • 刊出日期:  2025-07-09

目录

    /

    返回文章
    返回