Fine Rod Power Calculation and Verification for the Entire Lifetime of a Small Lead-Bismuth Fast Reactor
-
摘要: 小型铅铋快堆因其紧凑化设计带来的特殊性,对反应堆物理分析程序计算提出了更高要求。本文针对小型铅铋快堆SVBR-100,进行全寿期精细棒功率计算方法的探究。结果表明:针对该类型堆芯,在使用两步法程序进行精细棒功率计算的过程中,堆芯程序需要考虑组件均匀化计算过程获得的组件内功率分布信息(形状因子),而计算形状因子的过程中需要考虑组件布置、材料信息对计算的影响。在上述计算方法的基础上,本文应用西安交通大学核工程计算物理实验室(NECP)的SARAX程序,针对SVBR-100堆芯问题进行反应堆全寿期精细棒功率计算,并将计算结果和蒙特卡罗程序的计算结果进行对比。计算结果表明,SARAX程序在小型铅铋快堆的全寿期精细棒功率计算上具有较高的精度。本文工作为后续程序应用于小型铅铋快堆的堆芯设计及多物理场耦合的高分辨率计算奠定了基础。Abstract: Small lead-bismuth fast reactors, due to their compact design, impose higher requirements on reactor physics analysis codes. This paper explores the methodology of full-life cycle fine rod power calculations for the SVBR-100 small Lead-Bismuth fast reactor. The results show that for this type of reactor core, the two-step method code needs to consider the power distribution information in assembly (shape factor) obtained during the assembly homogenization process when performing fine rod power calculations. Additionally, the calculation of the shape factor must account for the influence of assembly layout and material information. Based on the above calculation method, this paper applies the SARAX from the Nuclear Engineering Computational Physics Laboratory (NECP) of Xi'an Jiaotong University to perform entire lifetime cycle fine rod power calculations for the SVBR-100 reactor core and compares the results with those from the Monte Carlo code. The calculation results demonstrate that SARAX achieves high accuracy in entire lifetime cycle fine rod power calculations for small lead-bismuth fast reactors. This work establishes a foundation for subsequent code applications in small lead-bismuth fast reactor core design and high-resolution calculations of multiphysics coupling.
-
表 1 计算模型几何参数
Table 1. Geometric Parameters of the Calculation Model
参数 数值 燃料棒直径/cm 1.1 燃料芯块直径/cm 1 控制棒直径/cm 1.2 燃料棒数量/根 13860 燃料组件数量/根 55 组件对边距/cm 22.545 燃料组件高度/cm 150 控制棒移动腔室内对边距/cm 4.5 控制棒移动腔室外对边距/cm 5.5 表 2 控制棒未插入组件中心时的形状因子
Table 2. Shape Factor When the Control Rod Is Not Inserted at the Center of the Assembly
燃耗/[GW·d·t−1(HM)] 形状因子 区域1 区域2 区域3 区域4 区域5 区域6 区域7 0 0.99787 0.99930 1.00018 1.00079 1.00123 1.00162 1.00193 10 0.99783 0.99927 1.00017 1.00080 1.00125 1.00164 1.00196 20 0.99778 0.99925 1.00017 1.00080 1.00127 1.00167 1.00199 30 0.99774 0.99922 1.00016 1.00081 1.00129 1.00169 1.00201 40 0.99769 0.99919 1.00015 1.00082 1.00131 1.00171 1.00204 50 0.99765 0.99917 1.00014 1.00082 1.00132 1.00174 1.00206 60 0.99760 0.99914 1.00013 1.00083 1.00134 1.00176 1.00209 70 0.99756 0.99912 1.00013 1.00083 1.00135 1.00178 1.00211 80 0.99753 0.99910 1.00012 1.00084 1.00137 1.00180 1.00213 90 0.99750 0.99908 1.00011 1.00084 1.00138 1.00182 1.00215 表 3 控制棒插入组件中心时的形状因子
Table 3. Shape Factor When the Control Rod Is Inserted at the Center of the Assembly
燃耗/[GW·d·t−1(HM)] 形状因子 区域1 区域2 区域3 区域4 区域5 区域6 区域7 0 0.95143 0.98078 1.00065 1.01424 1.02320 1.02854 1.03082 10 0.95115 0.98069 1.00068 1.01434 1.02335 1.02871 1.03100 20 0.95088 0.98061 1.00072 1.01445 1.02350 1.02888 1.03117 30 0.95062 0.98054 1.00075 1.01455 1.02364 1.02904 1.03135 40 0.95037 0.98047 1.00079 1.01466 1.02378 1.02920 1.03151 50 0.95013 0.98040 1.00083 1.01475 1.02392 1.02936 1.03167 60 0.94990 0.98033 1.00086 1.01485 1.02404 1.02950 1.03182 70 0.94967 0.98027 1.00089 1.01494 1.02417 1.02964 1.03197 80 0.94945 0.98020 1.00092 1.01502 1.02429 1.02978 1.03211 90 0.94924 0.98013 1.00094 1.01510 1.02440 1.02991 1.03225 表 4 不同燃料富集度下形状因子计算结果
Table 4. Calculation Results of Shape Factor under Different Fuel Enrichment Levels
235U富集度/% 形状因子 区域1 区域2 区域3 区域4 区域5 区域6 区域7 9.95 0.94752 0.97921 1.00069 1.01539 1.02509 1.03085 1.03329 16.07 0.95143 0.98078 1.00065 1.01424 1.02320 1.02854 1.03082 19.30 0.95317 0.98147 1.00062 1.01372 1.02236 1.02751 1.02972 表 5 不同10B富集度下形状因子计算结果
Table 5. Calculation Results of Shape Factor under Different 10B Enrichment Levels in Control Rod
10B富集度/% 形状因子 区域1 区域2 区域3 区域4 区域5 区域6 区域7 19.00 0.97885 0.99160 1.00022 1.00612 1.01005 1.01247 1.01359 62.80 0.95143 0.98078 1.00065 1.01424 1.02320 1.02854 1.03082 90.00 0.94007 0.97624 1.00077 1.01755 1.02862 1.03518 1.03795 表 6 不同材料温度下形状因子计算结果
Table 6. Calculation Results of Shape Factor under Different Material Temperatures
温度/K 形状因子 区域1 区域2 区域3 区域4 区域5 区域6 区域7 300 0.95143 0.98078 1.00065 1.01424 1.02320 1.02854 1.03082 600 0.95152 0.98081 1.00064 1.01421 1.02316 1.02848 1.03076 900 0.95156 0.98083 1.00064 1.01419 1.02313 1.02846 1.03073 表 7 全寿期堆芯临界计算结果
Table 7. Calculation Results of Core Criticality over the Full Lifetime
燃耗时间/d 燃耗/
[GW·d·t−1(HM)]keff(MCNP6) keff (SARAX) 偏差/pcm 0 0 1.01616±0.00009 1.01641 25 100 3.362 1.01219±0.00006 1.01253 44 200 6.724 1.00840±0.00004 1.00908 68 300 10.090 1.00463±0.00004 1.00560 97 400 13.450 1.00078±0.00004 1.00210 122 表 8 组件精细棒功率计算偏差
Table 8. Calculation Deviations for Fine Rod Power in the Assembly
相对功率 燃耗/
[GW·d·t−1(HM)]燃料棒
数量/根最大偏
差值/%平均
偏差/%均方根
偏差/%相对功率 燃耗/
[GW·d·t−1(HM)]燃料棒
数量/根最大偏
差值/%平均
偏差/%均方根
偏差/%≥1.20 0 998 2.27 0.20 0.65 [0.80,0.9) 0 199 −1.13 −0.03 0.44 3.362 2.14 0.48 0.60 3.362 −2.32 −0.54 0.57 6.724 2.38 0.53 0.57 6.724 −1.61 −0.28 0.56 10.090 1.97 0.50 0.47 10.090 −2.36 −0.78 0.71 13.450 2.12 0.44 0.53 13.450 −2.27 −0.78 0.92 [1.10,1.20) 0 307 2.71 1.09 0.73 [0.70,0.80) 0.000 152 1.22 0.21 0.45 3.362 2.39 0.99 0.72 3.362 −1.84 −0.35 0.52 6.724 2.56 1.22 0.68 6.724 −1.36 0.06 0.56 10.090 2.09 0.91 0.70 10.090 −2.25 −0.63 0.64 13.450 2.68 1.12 0.79 13.450 −2.21 −0.69 0.86 [1.00,1.10) 0 175 2.22 0.20 0.64 <0.70 0 200 −3.36 0.30 1.15 3.362 2.11 −0.19 0.74 3.362 3.48 −0.51 1.02 6.724 1.86 0.13 0.72 6.724 −3.45 −0.08 1.19 10.090 −1.84 −0.37 0.79 10.090 −3.76 −0.79 1.08 13.450 −2.37 −0.16 0.98 13.450 −4.64 −1.11 1.06 [0.90,1.00) 0 237 −1.29 −0.12 0.47 所有区间 0 2268 −3.36 0.27 0.76 3.362 −2.00 −0.65 0.54 3.362 −3.48 0.14 0.87 6.724 −1.65 −0.29 0.58 6.724 −3.45 0.35 0.82 10.090 −2.70 −0.80 0.71 10.090 −3.76 0.05 0.94 13.450 −2.32 −0.74 0.89 13.450 −4.64 0.04 1.05 -
[1] 吴宜灿. 铅基反应堆研究进展与应用前景[J]. 现代物理知识,2018, 30(4): 35-39. [2] WALLENIUS J, SUVDANTSETSEG E, FOKAU A. ELECTRA: European lead-cooled training reactor[J]. Nuclear Technology, 2012, 177(3): 303-313. doi: 10.13182/NT12-A13477 [3] HONG S G, GREENSPAN E, KIM Y I. The encapsulated nuclear heat source (ENHS) reactor core design[J]. Nuclear Technology, 2005, 149(1): 22-48. doi: 10.13182/NT05-A3577 [4] SMITH C F, HALSEY W G, BROWN N W, et al. SSTAR: The US lead-cooled fast reactor (LFR)[J]. Journal of Nuclear Materials, 2008, 376(3): 255-259. doi: 10.1016/j.jnucmat.2008.02.049 [5] CHOI S, CHO J H, BAE M H, et al. PASCAR: long burning small modular reactor based on natural circulation[J]. Nuclear Engineering and Design, 2011, 241(5): 1486-1499. doi: 10.1016/j.nucengdes.2011.03.005 [6] SHIN Y H, CHOI S, CHO J, et al. Advanced passive design of small modular reactor cooled by heavy liquid metal natural circulation[J]. Progress in Nuclear Energy, 2015, 83: 433-442. doi: 10.1016/j.pnucene.2015.01.002 [7] 袁显宝,曹良志,吴宏春. 铅铋冷却氮化物燃料小型模块化快中子反应堆堆芯物理特性分析[J]. 核技术,2017, 40(10): 100603. [8] 刘紫静,赵鹏程,张斌,等. 超长寿命小型自然循环铅铋快堆堆芯概念设计研究[J]. 原子能科学技术,2020, 54(7): 1254-1265. doi: 10.7538/yzk.2019.youxian.0720 [9] ZRODNIKOV A V, TOSHINSKY G I, KOMLEV O G, et al. Innovative nuclear technology based on modular multi-purpose lead-bismuth cooled fast reactors[J]. Progress in Nuclear Energy, 2008, 50(2-6): 170-178. doi: 10.1016/j.pnucene.2007.10.025 [10] ZRODNIKOV A V, TOSHINSKY G I, KOMLEV O G, et al. SVBR-100 module-type fast reactor of the IV generation for regional power industry[J]. Journal of Nuclear Materials, 2011, 415(3): 237-244. doi: 10.1016/j.jnucmat.2011.04.038 [11] International Atomic Energy Agency. Status of small reactor designs without on-site refueling: IAEA-TECDOC-1536[R]. Vienna: IAEA, 2007. [12] DERSTINE K L. DIF3D: a code to solve one-, two-, and three-dimensional finite-difference diffusion theory problems: ANL-82-64[R]. Argonne: Argonne National Laboratory, USA, 1984. [13] ADAMS C H. SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations: ANL-76-21[R]. Argonne National Laboratory, USA, 1976. [14] MAO L, ZMIJAREVIC I. A new Tone’s method in APOLLO3® and its application to fast and thermal reactor calculations[J]. Nuclear Engineering and Technology, 2017, 49(6): 1269-1286. doi: 10.1016/j.net.2017.08.002 [15] 徐李,马大园,施工,等. 快堆三维六角形节块法输运计算研究[J]. 原子能科学技术,2013, 47(2): 161-165. doi: 10.7538/yzk.2013.47.02.0161 [16] WEI L F, ZHENG Y Q, DU X N, et al. Development of SARAX code system for full-range spectrum adaptability in advanced reactor analysis[J]. Annals of Nuclear Energy, 2022, 165: 108664. doi: 10.1016/j.anucene.2021.108664 [17] WEI L F, ZHENG Y Q, DU X N, et al. Extension of SARAX code system for reactors with intermediate spectrum[J]. Nuclear Engineering and Design, 2020, 370: 110883. [18] ZHENG Y Q, DU X N, XU Z T, et al. SARAX: a new code for fast reactor analysis part I: methods[J]. Nuclear Engineering and Design, 2018, 340: 421-430. [19] ZHENG Y Q, QIAO L, ZHAI Z A, et al. SARAX: a new code for fast reactor analysis part II: verification, validation and uncertainty quantification[J]. Nuclear Engineering and Design, 2018, 331: 41-53. doi: 10.1016/j.nucengdes.2018.02.033 [20] 路瑶,杜夏楠,李爱鑫,等. 液态金属冷却快堆堆芯物理分析软件LoongSARAX的验证与确认[J]. 原子能科学技术,2024, 58(3): 549-562. doi: 10.7538/yzk.2023.youxian.0478 [21] 陈建达. 装载六角形组件堆芯的精细功率计算方法研究及程序开发与应用[D]. 西安: 西安交通大学,2021. -