Development and Validation of Assembly Calculation Module in 3D Neutron Transport Code for Molten Salt Reactors
-
摘要: 熔盐堆三维中子输运程序ThorMOC采用非均匀谱修正方法为全堆输运计算提供少群截面,需要依赖组件或超组件计算提供多群有效宏观截面。针对具有三维复杂形状共振区的熔盐堆组件或超组件,利用ThorMOC中基于图形处理器(GPU)并行和基于特征线法(MOC)的粗网综合加速(MSA)方法的准三维MOC输运求解器,实现了基于SHEM361能群结构多群数据库的嵌入式共振自屏方法(ESSM),从而在ThorMOC中支持熔盐堆组件计算。针对圆柱通道熔盐堆,划分7类组件并进行了验证分析,其中包括3个考虑上下支撑板及腔室的三维超组件,与连续能量蒙特卡罗方法结果相比,最大有效增殖因子相对偏差为−110pcm(1pcm =10−5)。数值计算结果表明所实现的组件计算模块可有效处理具有三维复杂形状共振区的熔盐堆组件计算。
-
关键词:
- 熔盐堆 /
- 组件计算 /
- 嵌入式共振自屏方法(ESSM) /
- 准3D 特征线法(MOC) /
- 基于特征线法的粗网综合加速(MSA)方法
Abstract: The three-dimensional (3D) neutron transport code ThorMOC for molten salt reactors (MSRs) utilizes the non-uniform spectra modification method to provide few-group cross sections for full-core transport calculations, which relies on the multi-group effective macroscopic cross sections from assembly or super-assembly calculations. For MSR assembly or super-assembly with 3D complex shape resonance regions, an Embedded Self-Shielding Method (ESSM) based on the SHEM361 multi-group data library had been developed within ThorMOC by leveraging its existing quasi-3D method of characteristics (MOC) solver, which is enhanced by GPU parallelization and the coarse-mesh MOC-based synthetic acceleration (MSA) technique, thereby enabling MSR assembly calculations in ThorMOC. For a cylindrical channel molten salt reactor, numerical analysis is conducted on seven types of assemblies, including three 3D super-assemblies with upper and lower support plates and cavities. Compared to results from the continuous-energy Monte Carlo method, the maximum keff relative deviation is −110pcm (1pcm=10−5). The numerical results demonstrate that the implemented assembly calculation module is effective for the calculations of MSR assemblies with 3D complex shape resonance regions. -
表 1 圆柱通道熔盐堆的基本参数
Table 1. Parameters of the Cylindrical Channel Molten Salt Reactor
参数名 参数值 堆芯构件的高度(半径)/cm 180(115) 堆容器的内径(厚度)/cm 115.5(3.0) 支撑板厚度/cm 5.0 上下腔室高度/cm 10 上下反射层高度/cm 16 控制棒通道套管内(外)半径/ cm 2.5(3.0) 熔盐通道半径(对边距)/cm 2.0(10.0) 熔盐出口半径/cm 6.25 表 2 ThorMOC与OpenMC计算的有效增殖因子对比
Table 2. Comparison of Effective Multiplication Factors between ThorMOC and OpenMC Calculations
组件类型 有效增殖因子 相对偏差/pcm OpenMC ThorMOC 燃料通道 1.41202$ \pm $0.00009 1.41176 −18 未插入控制棒通道 1.30175$ \pm $0.00013 1.30067 −83 插入控制棒通道 0.91377$ \pm $0.00013 0.91318 −65 反射层 1.14245$ \pm $0.00014 1.14216 −25 下腔室 1.04996$ \pm $0.00015 1.04928 −65 带控制棒上腔室 0.81260$ \pm $0.00013 0.81171 −110 带出口上腔室 1.04848$ \pm $0.00008 1.04789 −56 表 3 ThorMOC计算时Zr和Mo同位素共振处理对于有效增殖因子的影响
Table 3. Impact of Zr and Mo Isotope Resonance Treatments on Effective Multiplication Factor in ThorMOC Calculations
组件类型 有效增殖因子 Zr同位素
不共振处理相对
偏差/pcmMo同位素
不共振处理相对偏差/pcm 仅95Mo、96Mo和
98Mo共振处理相对
偏差/pcm燃料通道 1.41089 −80 1.41176 −18 1.41089 −80 未插入控制棒通道 1.30041 −103 1.30052 −94 1.30036 −107 插入控制棒通道 0.91301 −83 0.91302 −82 0.91297 −88 反射层 1.14154 −80 1.14207 −34 1.14152 −82 下腔室 1.04904 −88 1.04868 −122 1.04890 −101 带控制棒上腔室 0.81155 −129 0.81093 −205 0.81137 −151 带出口上腔室 1.04766 −78 1.04733 −110 1.04752 −92 表 4 ThorMOC对于各类组件计算的性能分析
Table 4. Performance Analysis of Assembly Calculations Using ThorMOC
组件类型 OpenMC
计算时间/sThorMOC
总时间/sThorMOC内存+
显存消耗/GBThorMOC共振
计算时间/sThorMOC多群
计算时间(MSA)/sThorMOC多群
计算时间
(自由迭代)/sMSA粗网求解
时间占比/%MSA
加速比燃料通道 3018 19.4 0.3+0.5 1.5 17.7 58.8 82.8 3.3 未插入控制棒通道 2994 67.8 1.0+1.4 16.8 50.0 131.6 72.0 2.6 插入控制棒通道 2573 74.8 1.0+1.5 18.2 55.7 161.0 64.0 2.9 反射层 2965 117.0 1.3+3.0 27.0 74.8 579.4 67.9 7.7 下腔室 3296 205.7 0.6+5.5 90.0 115.5 2284.0 31.3 19.8 带控制棒上腔室 3757 546.4 1.0+7.6 254.8 291.6 4808.2 29.8 16.5 带出口上腔室 3150 376.4 1.0+7.4 171.0 205.4 4742.0 21.5 23.1 -
[1] 陈亮,朱贵凤,王子业,等. 基于熔盐堆尾气提取的99Mo生产评估[J]. 核技术,2024, 47(8): 080604. doi: 10.11889/j.0253-3219.2024.hjs.47.080604 [2] 刘宙宇,许晓北,温兴坚,等. 确定论数值反应堆程序NECP-X的开发及应用[J]. 原子能科学技术,2022, 56(2): 226-238. doi: 10.7538/yzk.2021.youxian.0930 [3] 张宏博,赵晨,彭星杰,等. 数字化反应堆高保真中子学程序SHARK研发[J]. 原子能科学技术,2022, 56(2): 334-342. doi: 10.7538/yzk.2021.youxian.0902 [4] 俞陆林,杨高升,陈国华,等. 基于GPU加速的三维堆芯物理程序STORK的开发与验证[J]. 原子能科学技术,2024, 58(3): 662-671. doi: 10.7538/yzk.2023.youxian.0657 [5] FEI T, FENG B, HEIDET F. Molten salt reactor core simulation with PROTEUS[J]. Annals of Nuclear Energy, 2020, 140: 107099. doi: 10.1016/j.anucene.2019.107099 [6] ZHANG A, DAI M, CHENG M S, et al. High-fidelity neutronics simulation of channel-type molten salt reactors[J]. Nuclear Engineering and Design, 2023, 401: 112063. doi: 10.1016/j.nucengdes.2022.112063 [7] DAI M, CHENG M S. A low order MOC-based synthetic acceleration scheme of the MOC neutron transport method for molten salt reactors[J]. Annals of Nuclear Energy, 2024, 208: 110789. doi: 10.1016/j.anucene.2024.110789 [8] GRAHAM A M, TAYLOR Z, COLLINS B S, et al. Multiphysics coupling methods for molten salt reactor modeling and simulation in VERA[J]. Nuclear Science and Engineering, 2021, 195(10): 1065-1086. doi: 10.1080/00295639.2021.1901000 [9] DAI M, ZHANG A, CHENG M S. Improvement of the 3D MOC/DD neutron transport method with thin axial meshes[J]. Annals of Nuclear Energy, 2023, 185: 109731. doi: 10.1016/j.anucene.2023.109731 [10] ZHANG A, DAI M, CHENG M S, et al. Development of a GPU-based three-dimensional neutron transport code[J]. Annals of Nuclear Energy, 2022, 174: 109156. doi: 10.1016/j.anucene.2022.109156 [11] 戴明,张奥,程懋松. 基于非均匀谱修正方法的熔盐堆少群截面计算[J]. 核动力工程,2024, 45(5): 62-70. [12] 戴明,张奥,程懋松. ESSM和Tone方法在熔盐堆共振计算中的适用性分析[J]. 核技术,2022, 45(9): 090605. [13] DAI M, CHENG M S. Application of material-mesh algebraic collapsing acceleration technique in method of characteristics-based neutron transport code[J]. Nuclear Science and Techniques, 2021, 32(8): 95-109. [14] SALINO V, HÉBERT A. PyNjoy2016: an open source system for producing cross sections libraries for DRAGON5 and SERPENT2[C]//M&C 2023 - The International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering. Niagara Falls, Canada: ANS, 2023: 1-10. [15] ROMANO P K, HORELIK N E, HERMAN B R, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97. doi: 10.1016/j.anucene.2014.07.048 [16] HÉBERT A. Application of Tone's and embedded self-shielding methods to pressurized water reactor assemblies[J]. Annals of Nuclear Energy, 2018, 112: 439-449. doi: 10.1016/j.anucene.2017.10.031 [17] 张广春,刘杰,YANG W S. PROTEUS-MOC在TREAT试验堆稳态中子学计算中的应用[J]. 核技术,2020, 43(4): 040008. doi: 10.11889/j.0253-3219.2020.hjs.43.040008 [18] LIU Y F, YAN R, ZOU Y, et al. Sensitivity/uncertainty comparison and similarity analysis between TMSR-LF1 and MSR models[J]. Progress in Nuclear Energy, 2020, 122: 103289. doi: 10.1016/j.pnucene.2020.103289 -