Design of 40 kW Dual-drum Controlled Liquid Molten Salt Reactor in Catalogue: Neutronics and Dual-drum Worth Analysis
-
摘要: 核裂变反应堆热源(电源)由于没有对日定向需求、受太空环境影响小、功率大且可大幅度调节等诸多优点,有望应用于未来深空探索、星表科考站、星际航行等领域。本文在第四代核反应堆技术-熔盐堆的基础上,提出了一种以液态熔融盐作为核燃料与热管冷却的40 kW空间液态熔盐堆的概念设计,并提出采用控制鼓(调节功率)和安全鼓(紧急停堆)双鼓结合的创新型反应堆反应性控制方案。建立了液态熔盐空间核反应堆物理模型并基于蒙特卡罗程序MCNP和RMC分析获得了堆芯中子能谱、中子通量密度分布、温度效应以及燃耗深度等关键堆芯物理特性,并开展了控制鼓转角对反应性影响以及事故工况下部分双鼓失效下反应性的控制与堆芯安全分析。研究结果表明:本文所设计的40 kW空间液态熔盐堆可实现满功率运行10 a,控制鼓布置能够满足部分控制鼓或安全鼓失效下的堆芯安全要求。本研究可为空间液态熔盐堆的控制方案提供设计参考。Abstract: The heat source (power supply) of nuclear fission reactor is expected to be applied to deep space exploration, catalog scientific research station, interstellar navigation and other fields in the future due to its many advantages, such as no demand for solar orientation, small impact from space environment, large power range and large regulation range. Based on the fourth generation nuclear reactor technology—molten salt reactor, this paper proposes a conceptual design for a 40 kW space nuclear reactor utilizing liquid molten salt as nuclear fuel coupled with heat pipe cooling. A new reactivity control strategy combining control drum (for power regulation) and safety drum (for emergency shutdown) is proposed. The physical model of liquid molten salt space nuclear reactor is established, and the key physical characteristics of the core, such as neutron energy spectrum, neutron flux distribution, temperature effect and burnup depth, are obtained based on the Monte Carlo code MCNP and RMC analysis. The influence of control drum angle on reactivity and the reactivity control and core safety under partial failure of dual drums are further analyzed. The results show that the liquid molten salt space nuclear reactor designed in this paper can operate at full power for 10 years. The control drum arrangement can meet the core safety requirements under the failure of some control drums. This research can provide design reference for the control strategy of space liquid molten salt reactor and space reactor.
-
Key words:
- Space nuclear reactor /
- Liquid molten salt nuclear reactor /
- Control drum /
- Safety drum
-
表 1 堆芯主要参数
Table 1. Main Parameters of the Core
参数 数值及描述 热功率/kW 40 寿期/a 10 工作温度/K 1000 燃料盐成分[18] LiF-UF4(摩尔比72.5%∶27.5%) 热管工质 钠 结构材料 镍基合金 反射层材料 BeO 吸收体材料 B4C 控制鼓直径/cm 10 安全鼓直径/cm 14 -
[1] 吴伟仁,刘继忠,赵小津,等. 空间核反应堆电源研究[J]. 中国科学: 技术科学,2019, 49(1): 1-12. [2] EL-GENK M S. Deployment history and design considerations for space reactor power systems[J]. Acta Astronautica, 2009, 64(9-10): 833-849. doi: 10.1016/j.actaastro.2008.12.016 [3] KAMBE M, TSUNODA H, MISHIMA K, et al. Rapid-L operator-free fast reactor concept without any control rods[J]. Nuclear Technology, 2003, 143(1): 11-21. doi: 10.13182/NT03-A3394 [4] KING J C, EL-GENK M S. Submersion-Subcritical Safe Space (S4) reactor[J]. Nuclear Engineering and Design, 2006, 236(17): 1759-1777. doi: 10.1016/j.nucengdes.2005.12.010 [5] POSTON D I, GIBSON M, MCCLURE P. Kilopower reactors for potential space exploration missions[C]. Richland: Proceedings of the Nuclear and Emerging Technologies for Space, American Nuclear Society Topical Meeting, 2019. [6] EADES M. Development of molten salt reactor technology for space[D]. Columbus: The Ohio State University, 2012. [7] KIMURA R, YOSHIDA T. Design study of molten-salt-type reactor for powering space probes and its automated start-up[J]. Journal of Nuclear Science and Technology, 2013, 50(10): 998-1010. doi: 10.1080/00223131.2013.829284 [8] 李婷,庄坤,尚文,等. 熔盐冷却空间堆的初步中子学设计[J]. 核技术,2020, 43(8): 080006. doi: 10.11889/j.0253-3219.2020.hjs.43.080006 [9] CUI D Y, DAI Y, CAI X Z, et al. Preconceptual nuclear design of a 50 kWth heat pipe cooled micro molten salt reactor (micro-MSR)[J]. Progress in Nuclear Energy, 2021, 134: 103670. doi: 10.1016/j.pnucene.2021.103670 [10] 于世和,孙强,赵恒,等. 火星熔盐堆堆芯概念设计[J]. 核技术,2020, 43(5): 050603. doi: 10.11889/j.0253-3219.2020.hjs.43.050603 [11] SCHRIENER T M, EL-GENK M S. Reactivity control options of space nuclear reactors[J]. Progress in Nuclear Energy, 2009, 51(3): 526-542. doi: 10.1016/j.pnucene.2008.11.003 [12] CRAFT A E, KING J C. Reactivity control schemes for fast spectrum space nuclear reactors[J]. Nuclear Engineering and Design, 2011, 241(5): 1516-1528. doi: 10.1016/j.nucengdes.2011.01.049 [13] MENG T, CHENG K, ZENG C, et al. Preliminary control strategies of megawatt-class gas-cooled space nuclear reactor with different control rod configurations[J]. Progress in Nuclear Energy, 2019, 113: 135-144. doi: 10.1016/j.pnucene.2019.01.013 [14] KING J C, EL-GENK M S. A methodology for the neutronics design of space nuclear reactors[J]. AIP Conference Proceedings, 2004, 699(1): 319-329. [15] 杨谢,佘顶,石磊. 棱柱式高温气冷空间核反应堆初步方案设计与中子物理分析[J]. 原子能科学技术,2017, 51(12): 2288-2293. doi: 10.7538/yzk.2017.51.12.2288 [16] DEMUTH S F. SP100 space reactor design[J]. Progress in Nuclear Energy, 2003, 42(3): 323-359. doi: 10.1016/S0149-1970(03)90003-5 [17] LEE H C, HAN T Y, LIM H S, et al. An accident-tolerant control drum system for a small space reactor[J]. Annals of Nuclear Energy, 2015, 79: 143-151. doi: 10.1016/j.anucene.2015.02.001 [18] DEWAN L. Molecular dynamics simulation and topological analysis of the network structure of actinide-bearing materials[D]. Cambridge: Massachusetts Institute of Technology, 2013. -