Study on Evolution Mechanism for Local Melting Accident of Dispersed Plate Fuel
-
摘要: 为掌握板状燃料熔化事故演化过程,防止堆芯燃料持续熔化扩展,以典型板状燃料研究堆JRR-3M为对象,采用流体体积(VOF)法与焓-多孔介质法相耦合,对相邻流道堵塞后弥散型板状燃料局部熔化与熔融物迁移过程展开模拟。模拟结果表明:局部熔化事故的演化过程分为升温、熔化、迁移、凝固4个阶段,其中,迁移阶段的时间极短,持续不足3 s,但对事故扩展起决定性影响;迁移阶段,熔融物以底部聚集和中部液滴溅射两种方式迁移至相邻燃料板上,在被相邻燃料板充分冷却后,开始凝固;高温熔融物在接触相邻燃料板后,会导致相邻燃料板冷却壁面的温度迅速上升至500~600 K,远超冷却剂沸点,使相邻燃料板存在被烧毁的风险。该模拟方法与结果可为板状燃料堆芯熔化事故的安全分析提供支持。Abstract: To understand the evolution process of plate fuel melting accident and prevent the continuous core fuel melting, the typical plate fuel research reactor JRR-3M was used as the research object, and the volume of fluid (VOF) method was coupled with enthalpy-porosity method to simulate the local melting and melt migration process of dispersed plate fuel after adjacent flow channels were blocked. The simulation results show that the evolution process of local melting accident is divided into four stages: temperature rise, melting, migration and solidification. Among them, the migration stage is extremely short and lasts less than 3 s, but it has a decisive influence on the accident expansion. In the migration stage, the melt migrates to the adjacent fuel plate in two ways: bottom gathering and middle droplet sputtering, and begins to solidify after being fully cooled by the adjacent fuel plate. After the high-temperature melt contacts the adjacent fuel plate, the temperature of the adjacent fuel plate cooling wall will rise rapidly to 500~600 K, far exceeding the boiling point of the coolant, which poses a burnout risk to the adjacent fuel plate. The established simulation method and the obtained simulation results can provide support for the safety analysis of plate fuel core melting accident.
-
Key words:
- Plate fuel /
- Melting accident /
- Evolution mechanism /
- Numerical simulation
-
表 1 包壳与芯体的热物性参数
Table 1. Thermophysical Parameters of Cladding and Core
参数名 参数值 包壳 芯体 密度/(kg·m−3) 2700 6000 比热/(J·kg−1·K−1) 896 406.7 热导率/(W·m−1·K−1) 170 (固相)
100(液相)32(固相)
34 (液相)液相粘性系数/(mPa·s) 2.0 5.6 液相表面张力/(N·m−1) 0.914 0.914 固相线温度/K 855 855 液相线温度/K 925 925 熔化潜热/(kJ·kg−1) 396.7 113.1 -
[1] TAESUNG H A. Hydraulic studies of the 18-plate assembly in the mcmaster nuclear reactor[D]. Hamilton: McMaster University, 2002. [2] KELLER F R. Fuel element flow blockage in the engineering test reactor[Z]. Washington: United States Atomic Energy Commission, 1962. [3] SIMS T M, TABOR W H. Report on fuel-plate melting at the oak ridge research reactor[Z]. Oak Ridge: Oak Ridge National Laboratory (ORNL), 1964. [4] 李健全,陈晓明,李金才. 板状燃料堆芯流道阻塞事故分析[J]. 原子能科学技术,2002, 36(1): 76-79. doi: 10.3969/j.issn.1000-6931.2002.01.018 [5] BINFORD F T, COLE T E, CRAMER E N. The high flux isotope reactor accidentanalysis[Z]. U,S.,Oak Ridge: Oak Ridge National Laboratory (ORNL), 1967. [6] KIM S H, TALEYARKHAN R P, NAVARRO-VALENTI S, et al. Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the advanced neutron source reactor at oak ridge national laboratory[Z]. Oak Ridge: Oak Ridge National Laboratory (ORNL), 1995. [7] 刘天才,金华晋,袁履正. 中国先进研究堆堵流事故分析[J]. 核动力工程,2006, 27(S2): 32-35,44. [8] ALBATI M A, AL-YAHIA O S, PARK J, et al. Thermal hydraulic analyses of JRR-3: Code-to-code comparison of COOLOD-N2 and TMAP[J]. Progress in Nuclear Energy, 2014, 71: 1-8. doi: 10.1016/j.pnucene.2013.10.015 [9] HIRT C W, NICHOLS B D. Volume of Fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. doi: 10.1016/0021-9991(81)90145-5 [10] VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1720. doi: 10.1016/0017-9310(87)90317-6 [11] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. doi: 10.1016/0021-9991(92)90240-Y [12] CABEZA L F. Advances in thermal energy storage systems[M]. 2nd ed. Amsterdam: Elsevier, 2020: 366. [13] 丁文杰,王少华,高娇,等. 板状燃料组件流道部分堵塞的安全边界研究[J]. 强激光与粒子束,2022, 34(5): 056003. [14] HASSELMAN D P H, JOHNSON L F. Effective thermal conductivity of composites with interfacial thermal barrier resistance[J]. Journal of Composite Materials, 1987, 21(6): 508-515. doi: 10.1177/002199838702100602 [15] OHSHIMA H. Effective viscosity of a concentrated suspension of uncharged porous spheres[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 347(1-3): 33-37. [16] 丁文杰,郭海兵,王少华,等. 高功率脉冲加热条件下燃料模块流动传热特性研究[J]. 原子能科学技术,2017, 51(12): 2118-2124. doi: 10.7538/yzk.2017.51.12.2118 -