高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铅铋环境下换热管腐蚀-传热耦合特性数值研究

王译锋 彭天骥 范旭凯 田旺盛 唐延泽 孟海燕

王译锋, 彭天骥, 范旭凯, 田旺盛, 唐延泽, 孟海燕. 铅铋环境下换热管腐蚀-传热耦合特性数值研究[J]. 核动力工程, 2025, 46(S1): 228-236. doi: 10.13832/j.jnpe.2025.S1.0228
引用本文: 王译锋, 彭天骥, 范旭凯, 田旺盛, 唐延泽, 孟海燕. 铅铋环境下换热管腐蚀-传热耦合特性数值研究[J]. 核动力工程, 2025, 46(S1): 228-236. doi: 10.13832/j.jnpe.2025.S1.0228
Wang Yifeng, Peng Tianji, Fan Xukai, Tian Wangsheng, Tang Yanze, Meng Haiyan. Numerical Study on Corrosion and Heat Transfer Coupling Characteristics of Heat Exchange Tube in LBE Environment[J]. Nuclear Power Engineering, 2025, 46(S1): 228-236. doi: 10.13832/j.jnpe.2025.S1.0228
Citation: Wang Yifeng, Peng Tianji, Fan Xukai, Tian Wangsheng, Tang Yanze, Meng Haiyan. Numerical Study on Corrosion and Heat Transfer Coupling Characteristics of Heat Exchange Tube in LBE Environment[J]. Nuclear Power Engineering, 2025, 46(S1): 228-236. doi: 10.13832/j.jnpe.2025.S1.0228

铅铋环境下换热管腐蚀-传热耦合特性数值研究

doi: 10.13832/j.jnpe.2025.S1.0228
基金项目: 广东省基础与应用基础研究基金(2021A1515010026);中国科学院区域发展青年学者项目;ADANES乏燃料再生循环利用关键技术(GJ14010305燃料组件材料选型研究)
详细信息
    作者简介:

    王译锋(1997—),男,助理工程师,现主要从事铅铋堆系统热工水力研究;E-mail: wangyifeng@gdlhz.ac.cn

    通讯作者:

    彭天骥,E-mail: pengtianji@impcas.ac.cn

  • 中图分类号: TL353

Numerical Study on Corrosion and Heat Transfer Coupling Characteristics of Heat Exchange Tube in LBE Environment

  • 摘要: 为研究铅铋合金(LBE)换热管内的氧化腐蚀现象及氧化层生长对于换热的影响,本文基于氧化腐蚀模型、传质控制腐蚀模型、氧化层热阻模型,利用FLUENT软件结合用户自定义函数(UDF)对铅铋介质换热管在9500 h内的腐蚀与传热过程进行模拟计算。研究结果表明:基础工况运行9500 h后,磁铁矿层和尖晶石层的平均厚度分别达到23.84 μm和25.02 μm。由于氧化层生长引入额外热阻,壁面平均热阻增加7.8%,换热管壁面温度和出口温度分别升高0.26 K和0.2 K。入口温度越低,氧化层的厚度越小,但厚度随时间逐渐增加,说明相较于去除过程,氧化层生长过程占据主要地位。入口氧浓度越低,氧化层的厚度同样越小,当氧浓度降低到10−7%时,换热管入口磁铁矿层出现局部完全溶解,且溶解范围随时间逐渐扩大。尖晶石层由于较低的去除速率,接触铅铋后依然保持增长,对结构材料起到主要的保护作用。

     

  • 图  1  磁铁矿层或尖晶石层接触LBE时的化学反应

    Figure  1.  Chemical Reaction of the Magnetite or Spinel in Contact with LBE

    图  2  磁铁矿层厚度与尖晶石层厚度的模拟值与实验值的对比

    Figure  2.  Comparison of Simulated and Experimental Values of Magnetite and Spinel Thickness

    图  3  9500 h时换热管表面各参数云图

    Figure  3.  Cloud Image of Heat Exchange Tube Surface at 9500 h

    图  4  氧化层厚度、壁面平均热阻、换热管出口和壁面温度随时间的变化

    Figure  4.  Variation of Oxide Layer Thickness, Average Wall Thermal Resistance, Heat Exchange Tube Outlet Temperature and Wall Temperature with Time

    图  5  不同温度下氧化层厚度、壁面平均热阻随时间的变化

    Figure  5.  Variation of Oxide Layer Thickness and Average Wall Thermal Resistance with Time at Different Temperatures

    图  6  不同氧浓度下氧化层厚度及壁面平均热阻随时间的变化

    (1)—氧浓度5×10−6%;(2)—氧浓度1×10−6%;(3)—氧浓度1×10−7%。

    Figure  6.  Variation of Oxide Layer Thickness and Average Wall Thermal Resistance with Time at Different Oxygen Concentrations

    图  7  1×10−7%氧浓度磁铁矿层和尖晶石层在不同时间下的轴向厚度分布

    Figure  7.  Axial Thickness Distribution of Magnetite Layer and Spinel Layer at Different Time under 1×10−7% Oxygen Concentration

    表  1  工况一览表

    Table  1.   List of Operating Conditions

    工况序号氧化层种类温度/℃氧浓度/10−7%流速/(m·s−1)
    1尖晶石45012
    2尖晶石55012
    3尖晶石450112
    4尖晶石500101
    5磁铁矿450112
    6磁铁矿500101
    下载: 导出CSV

    表  2  网格无关性分析

    Table  2.   Grid Independence Analysis

    序号 网格数 出口最高
    温度/K
    磁铁矿层
    最大厚度/μm
    尖晶石层
    最大厚度/μm
    网格1 1273935 806.47 3.07 2.79
    网格2 2557035 806.48 3.09 2.82
    网格3 4651179 806.49 3.11 2.83
    网格4 6406335 806.49 3.12 2.84
    网格5 8239335 806.49 3.12 2.84
    下载: 导出CSV
  • [1] 彭天骥,顾龙,王大伟,等. 中国加速器驱动嬗变研究装置次临界反应堆概念设计[J]. 原子能科学技术,2017, 51(12): 2235-2241. doi: 10.7538/yzk.2017.51.12.2235
    [2] ZHANG J S, LI N. Review of the studies on fundamental issues in LBE corrosion[J]. Journal of Nuclear Materials, 2008, 373(1-3): 351-377. doi: 10.1016/j.jnucmat.2007.06.019
    [3] MARINO A, LIM J, KEIJERS S, et al. Numerical modeling of oxygen mass transfer in a wire wrapped fuel assembly under flowing lead bismuth eutectic[J]. Journal of Nuclear Materials, 2018, 506: 53-62. doi: 10.1016/j.jnucmat.2017.12.017
    [4] FENG W P, ZHANG X, CAO L K, et al. Development of oxygen/corrosion product mass transfer model and oxidation-corrosion model in the lead-alloy cooled reactor core[J]. Corrosion Science, 2021, 190: 109708. doi: 10.1016/j.corsci.2021.109708
    [5] MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part I)[J]. Corrosion Science, 2008, 50(9): 2523-2536. doi: 10.1016/j.corsci.2008.06.050
    [6] MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of an Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy at 470℃ (Part II)[J]. Corrosion Science, 2008, 50(9): 2537-2548. doi: 10.1016/j.corsci.2008.06.051
    [7] MARTINELLI L, BALBAUD-CÉLÉRIER F, PICARD G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part III)[J]. Corrosion Science, 2008, 50(9): 2549-2559. doi: 10.1016/j.corsci.2008.06.049
    [8] 陆定晟,王琛,王成龙,等. 卧式铅铋堆芯氧化腐蚀特性研究[J]. 核动力工程,2023, 44(3): 96-103.
    [9] SCHROER C, WEDEMEYER O, SKRYPNIK A, et al. Corrosion kinetics of Steel T91 in flowing oxygen-containing lead–bismuth eutectic at 450℃[J]. Journal of Nuclear Materials, 2012, 431(1-3): 105-112. doi: 10.1016/j.jnucmat.2011.11.014
    [10] TSISAR V, SCHROER C, WEDEMEYER O, et al. Characterization of corrosion phenomena and kinetics on T91 ferritic/martensitic steel exposed at 450 and 550℃ to flowing Pb-Bi eutectic with 10−7 mass% dissolved oxygen[J]. Journal of Nuclear Materials, 2017, 494: 422-38. doi: 10.1016/j.jnucmat.2017.07.031
    [11] TIAN S, JIANG Z, LUO L. Oxidation behavior of T91 steel in flowing oxygen-containing lead-bismuth eutectic at 500℃[J]. Materials and Corrosion, 2016, 67(12): 1274-1285. doi: 10.1002/maco.201609075
    [12] ZHANG H P, LIU X D, XU Y C, et al. Comparison investigation on corrosion of SIMP and T91 steels exposed to liquid LBE at 450℃: the role of Si on reducing oxidation rate[J]. Corrosion Science, 2023, 225: 111553. doi: 10.1016/j.corsci.2023.111553
    [13] BALBAUD-CÉLÉRIER F, BARBIER F. Investigation of models to predict the corrosion of steels in flowing liquid lead alloys[J]. Journal of Nuclear Materials, 2001, 289(3): 227-242. doi: 10.1016/S0022-3115(01)00431-7
    [14] FAZIO C. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies-2015 edition[M]. Paris: OECD, 2016.
    [15] NIU F L, CANDALINO R, LI N. Effect of oxygen on fouling behavior in lead-bismuth coolant systems[J]. Journal of Nuclear Materials, 2007, 366(1-2): 216-222. doi: 10.1016/j.jnucmat.2007.01.223
    [16] TEDMON JR C S. The effect of oxide volatilization on the oxidation kinetics of Cr and Fe-Cr alloys[J]. Journal of the Electrochemical Society, 1966, 113(8): 766. doi: 10.1149/1.2424115
    [17] MARINO A, LIM J, KEIJERS S, et al. A mass transfer correlation for packed bed of lead oxide spheres in flowing lead–bismuth eutectic at high Péclet numbers[J]. International Journal of Heat and Mass Transfer, 2015, 80: 737-747. doi: 10.1016/j.ijheatmasstransfer.2014.09.079
    [18] CHENG X, TAK N I. Investigation on turbulent heat transfer to lead-bismuth eutectic flows in circular tubes for nuclear applications[J]. Nuclear Engineering and Design, 2006, 236(4): 385-393. doi: 10.1016/j.nucengdes.2005.09.006
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  1
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-03
  • 修回日期:  2025-01-20
  • 网络出版日期:  2025-07-09
  • 刊出日期:  2025-06-15

目录

    /

    返回文章
    返回