Study on the Internal Flow Distribution Characteristics of Plate-Type Fuel Elements in THFR
-
摘要: 为了分析宽能谱超高通量试验堆(THFR)堆芯内的流量分配不均匀系数,本文使用FLUENT 2022 R2软件分析了THFR最内侧的燃料元件在不同速度入口条件下的各冷却剂通道的面平均流速分布情况。在更保守的假设下,对于均匀的速度入口,不同冷却剂通道的面平均速度相较于整体面平均速度的最大相对误差小于0.6%;对于人为构造的不均匀速度入口,不同冷却剂通道的面平均速度相较于整体面平均速度的最大相对误差小于6%,为后续的反应堆设计提供了依据。不均匀速度入口导致了冷却剂通道入口处的静压力存在较大的不均匀性,相较于入口处的冷却剂静压分布,冷却剂通道出口处的静压力分布则较为均匀,存在等压平面,压降的不一致导致冷却剂流速分布的不一致,因此在后续的反应堆结构设计中,应该确保堆芯入口处的冷却剂得到充分交混。
-
关键词:
- 宽能谱超高通量试验堆(THFR) /
- 流量分配 /
- 高通量堆
Abstract: The distribution of area averaged coolant velocities across various coolant channels within the innermost fuel element of the Tsinghua High Flux Reactor (THFR) was analyzed using the FLUENT 2022 R2 under different inlet velocity conditions. Under more conservative assumptions, for uniform velocity inlets, the maximum relative deviation of area-averaged velocities across different coolant channels from the overall area-averaged velocity was less than 0.6%; for artificially constructed non-uniform velocity inlets, the maximum relative deviation of area-averaged velocities across different coolant channels from the overall area-averaged velocity was less than 6%, providing a basis for subsequent reactor design. Non-uniform velocity inlets resulted in significant non-uniformity in the static pressure at the coolant channel inlets. In contrast, the static pressure distribution at the coolant channel outlets was more uniform, with isobaric planes present. The inconsistency in pressure drop led to non-uniform coolant velocity distributions. Therefore, in subsequent reactor structural design, it is crucial to ensure that the coolant at the core inlet is sufficiently mixed.-
Key words:
- THFR /
- Flow distribution /
- High-flux reactor
-
表 1 反应堆基本参数
Table 1. Basic Reactor Parameters
参数 参数值 功率/MW 80 活性区高度/m 0.5 燃料芯体厚度/mm 0.7 包壳厚度/mm 0.4 一回路系统的压力/MPa 2.0 活性区等效直径/m 0.6 压力容器冷却剂入口温度/K 323 压力容器冷却剂出口温度/K 339 燃料循环长度/d 27.5 表 2 入口静压结果
Table 2. Inlet Static Pressure Results
编号 网格数 入口压力/Pa 方案1 3287010 153693.28 方案2 2739507 150983.18 -
[1] XU W, LI J, XIE H, et al. Conceptual design and safety characteristics of a new multi-mission high flux research reactor[J]. Nuclear Science and Techniques, 2023, 34(3): 34. doi: 10.1007/s41365-023-01191-6 [2] WANG Z, XU W, XIE H. The conceptual design of emergency core cooling scheme for Tsinghua high flux reactor[J]. Annals of Nuclear Energy, 2024, 206: 110652. doi: 10.1016/j.anucene.2024.110652 [3] WANG Z, XU W, XIE H. The preliminary design of emergency core cooling scheme and loss-of-coolant accident analysis for Tsinghua high flux reactor[J]. Progress in Nuclear Energy, 2024, 177: 105453. doi: 10.1016/j.pnucene.2024.105453 [4] WANG Z, LV M, XIE H. Research on the key design of emergency core cooling scheme for Tsinghua high flux reactor[J]. Annals of Nuclear Energy, 2025, 211: 110898. doi: 10.1016/j.anucene.2024.110898 [5] WANG Z, ZHU G, XIE H. Early mitigation measures for high flux reactor loss-of-coolant accidents[C]//Proceedings of the 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. [6] PEGONEN R, BOURDON S, GONNIER C, et al. Hydraulic modeling of the Jules Horowitz Reactor: Mass flow split between 36 fuel elements[J]. Nuclear Engineering and Design, 2016, 308: 9-19. doi: 10.1016/j.nucengdes.2016.08.008 -