高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高通量研究堆铍反射层中毒问题的理论与数值分析

李凯文 骆浩 刘志宏 佘顶 赵晶

李凯文, 骆浩, 刘志宏, 佘顶, 赵晶. 高通量研究堆铍反射层中毒问题的理论与数值分析[J]. 核动力工程, 2025, 46(S1): 260-268. doi: 10.13832/j.jnpe.2025.S1.0260
引用本文: 李凯文, 骆浩, 刘志宏, 佘顶, 赵晶. 高通量研究堆铍反射层中毒问题的理论与数值分析[J]. 核动力工程, 2025, 46(S1): 260-268. doi: 10.13832/j.jnpe.2025.S1.0260
Li Kaiwen, Luo Hao, Liu Zhihong, She Ding, Zhao Jing. Theoretical and Numerical Analysis of Beryllium Reflector Poisoning in High-Flux Research Reactor[J]. Nuclear Power Engineering, 2025, 46(S1): 260-268. doi: 10.13832/j.jnpe.2025.S1.0260
Citation: Li Kaiwen, Luo Hao, Liu Zhihong, She Ding, Zhao Jing. Theoretical and Numerical Analysis of Beryllium Reflector Poisoning in High-Flux Research Reactor[J]. Nuclear Power Engineering, 2025, 46(S1): 260-268. doi: 10.13832/j.jnpe.2025.S1.0260

高通量研究堆铍反射层中毒问题的理论与数值分析

doi: 10.13832/j.jnpe.2025.S1.0260
详细信息
    作者简介:

    李凯文(1997—),男,博士后,助理研究员,现主要从事核反应堆物理数值计算及设计优化等研究,E-mail: likaiwen@tsinghua.edu.cn

    通讯作者:

    刘志宏,E-mail: lzhong@tsinghua.edu.cn

  • 中图分类号: TL329+.2

Theoretical and Numerical Analysis of Beryllium Reflector Poisoning in High-Flux Research Reactor

  • 摘要: 高通量研究堆广泛使用铍作为反射层,以提高中子利用率。为研究铍反射层内核素嬗变过程的中子毒物6Li、3He的积累特性与规律,而非仅对特定算例进行评估,本研究通过解析求解铍反射层内核素嬗变相关方程,获得各核素积累过程的相关规律,从而在理论层面上评估铍反射层中毒问题引入的负反应性,并获得了铍反射层中毒过程中6Li平衡浓度与中子注量率水平无关,3He积累速率上限与中子注量率水平无关等规律性结论。通过使用RMC对宽能谱超高通量研究堆(THFR)的铍反射层进行计算,并与理论预测结果进行对比,结果符合良好,验证了理论分析的正确性。相关结论可以省去长时间多步燃耗计算的资源消耗,仅需进行少数几次临界计算即可获得负反应性引入数值,从而高效准确地为高通量研究堆的反射层设计与更换频率、剩余反应性设计等提供重要依据。

     

  • 图  1  9Be的反应道链路

    Figure  1.  Chain of Beryllium-9’s Reaction Channels

    图  2  9Be的主要反应道链路

    Figure  2.  Chain of Beryllium-9’s Main Reaction Channels

    图  3  9Be和6Li的(n,α)反应截面随入射中子能量的变化曲线(ENDF Ⅷ.0)

    Figure  3.  (n,α) Cross Sections of 9Be and 6Li versus Incident Neutron Energy (ENDF Ⅷ.0)

    图  4  9Be和6Li的数密度随时间变化曲线

    Figure  4.  Number Densities of 9Be and 6Li versus Time

    图  5  3He的(n,p)反应截面

    Figure  5.  (n,p) Cross Section of 3He

    图  6  3H和3He的数密度随时间变化曲线

    Figure  6.  Number Densities of 3H and 3He versus Time

    图  7  3H和3He的数密度变化率随时间变化曲线

    Figure  7.  Changing Rates of Number Densities of 3H and 3He versus Time

    图  8  THFR铍反射层燃耗条件下堆芯keff随时间变化曲线

    Figure  8.  THFR’s Core keff versus Time with Burnup of Beryllium Reflector

    图  9  模拟计算和理论计算($ \phi = $2.1×1014 cm−2·s−1)得到的6Li和3He数密度随时间变化曲线对比图

    Figure  9.  Comparison for the Number Densities of 6Li and 3He versus Time between Simulation and Theory ($ \phi = $2.1×1014 cm−2·s−1)

    图  10  模拟计算和理论计算($ \phi = $1015 cm−2·s−1)得到的6Li数密度随时间变化曲线对比图

    Figure  10.  Comparison for the Number Densities of 6Li versus Time between Simulation and Theory ($ \phi = $1015 cm−2·s−1)

  • [1] XU W, LI J, XIE H, et al. Conceptual design and safety characteristics of a new multi-mission high flux research reactor[J]. Nuclear Science and Techniques, 2023, 34(3): 34. doi: 10.1007/s41365-023-01191-6
    [2] CHEVERTON R D, SIMS T M. HFIR core nuclear design: ORNL-4621[R]. Oak Ridge, Tennessee: Oak Ridge National Laboratory (ORNL), 1971.
    [3] STANLEY C J, MARSHALL F M. Advanced test reactor: a national scientific user facility[C]//16th International Conference on Nuclear Engineering. Orlando, Florida: The American Society of Mechanical Engineers, 2008: 367-372.
    [4] WRÓBLEWSKA M, BLANCHET D, LYOUSSI A, et al. A review and analysis of the state of the art on beryllium poisoning in research reactors[J]. Annals of Nuclear Energy, 2021, 163: 108540. doi: 10.1016/j.anucene.2021.108540
    [5] WIESELQUIST W A, LEFEBVRE R A, JESSEE M A. SCALE code system: ORNL/TM-2005/39[R]. Oak Ridge, Tennessee: Oak Ridge National Laboratory (ORNL), 2020.
    [6] WANG K, LI Z G, SHE D, et al. RMC-A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129.
    [7] CHANDLER D, PRIMM III R T, MALDONADO G I. Reactivity accountability attributed to beryllium reflector poisons in the high flux isotope reactor: ORNL/TM-2009/188[R]. Oak Ridge, Tennessee: Oak Ridge National Laboratory, 2009.
    [8] EVANS J E. Reaction products in high nvt irradiated beryllium: IDO-16364[R]. Idaho Falls, Idaho: Phillips Petroleum Company Atomic Energy Division, 1956.
    [9] BROWN D A, CHADWICK M B, CAPOTE R, et al. ENDF/B-VIII. 0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data[J]. Nuclear Data Sheets, 2018, 148: 1-142. doi: 10.1016/j.nds.2018.02.001
    [10] 骆浩,刘召远,黄善仿,等. 基于RMC的输运燃耗活化耦合计算及铍反射层毒物积累问题研究[C]//先进核能技术全国重点实验室2024年学术年会. 成都: 中国核动力研究设计院,2024.
    [11] TOMBERLIN T A. Beryllium-a unique material in nuclear applications: INEEL/CON-04-01869[R]. Idaho Falls, Idaho: Idaho National Laboratory, 2004.
  • 加载中
图(10)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  1
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-14
  • 修回日期:  2025-04-22
  • 刊出日期:  2025-06-15

目录

    /

    返回文章
    返回