Theoretical and Numerical Analysis of Beryllium Reflector Poisoning in High-Flux Research Reactor
-
摘要: 高通量研究堆广泛使用铍作为反射层,以提高中子利用率。为研究铍反射层内核素嬗变过程的中子毒物6Li、3He的积累特性与规律,而非仅对特定算例进行评估,本研究通过解析求解铍反射层内核素嬗变相关方程,获得各核素积累过程的相关规律,从而在理论层面上评估铍反射层中毒问题引入的负反应性,并获得了铍反射层中毒过程中6Li平衡浓度与中子注量率水平无关,3He积累速率上限与中子注量率水平无关等规律性结论。通过使用RMC对宽能谱超高通量研究堆(THFR)的铍反射层进行计算,并与理论预测结果进行对比,结果符合良好,验证了理论分析的正确性。相关结论可以省去长时间多步燃耗计算的资源消耗,仅需进行少数几次临界计算即可获得负反应性引入数值,从而高效准确地为高通量研究堆的反射层设计与更换频率、剩余反应性设计等提供重要依据。Abstract: Beryllium is widely used as the reflector in high flux research reactors to improve neutron economy. To investigate the accumulation characteristics and laws of neutron poisons 6Li and 3He during the transmutation process in the beryllium reflector—rather than merely evaluating specific test cases—this study analyzes and solves the equations of nuclide transmutation in the beryllium reflector, obtains the relevant laws of the accumulation process of each nuclide, and evaluates the negative reactivity introduced by the beryllium reflector poisoning theoretically. It is concluded that the equilibrium concentration of 6Li is independent of the neutron flux level, and the upper limit of 3He accumulation rate is independent of the neutron flux level. By using RMC to calculate the beryllium reflector of the Tsinghua High Flux Reactor (THFR) and comparing with theoretical predictions, the results are in good agreement, which validates the correctness of the theoretical analysis. The relevant conclusions can save the resource consumption of long and multi-step burnup calculations, and only a few critical calculations are needed to obtain the value of the negative reactivity, thus efficiently and accurately providing important basis for the design and replacement frequency of reflector, residual reactivity design, etc. of high flux research reactors.
-
-
[1] XU W, LI J, XIE H, et al. Conceptual design and safety characteristics of a new multi-mission high flux research reactor[J]. Nuclear Science and Techniques, 2023, 34(3): 34. doi: 10.1007/s41365-023-01191-6 [2] CHEVERTON R D, SIMS T M. HFIR core nuclear design: ORNL-4621[R]. Oak Ridge, Tennessee: Oak Ridge National Laboratory (ORNL), 1971. [3] STANLEY C J, MARSHALL F M. Advanced test reactor: a national scientific user facility[C]//16th International Conference on Nuclear Engineering. Orlando, Florida: The American Society of Mechanical Engineers, 2008: 367-372. [4] WRÓBLEWSKA M, BLANCHET D, LYOUSSI A, et al. A review and analysis of the state of the art on beryllium poisoning in research reactors[J]. Annals of Nuclear Energy, 2021, 163: 108540. doi: 10.1016/j.anucene.2021.108540 [5] WIESELQUIST W A, LEFEBVRE R A, JESSEE M A. SCALE code system: ORNL/TM-2005/39[R]. Oak Ridge, Tennessee: Oak Ridge National Laboratory (ORNL), 2020. [6] WANG K, LI Z G, SHE D, et al. RMC-A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. [7] CHANDLER D, PRIMM III R T, MALDONADO G I. Reactivity accountability attributed to beryllium reflector poisons in the high flux isotope reactor: ORNL/TM-2009/188[R]. Oak Ridge, Tennessee: Oak Ridge National Laboratory, 2009. [8] EVANS J E. Reaction products in high nvt irradiated beryllium: IDO-16364[R]. Idaho Falls, Idaho: Phillips Petroleum Company Atomic Energy Division, 1956. [9] BROWN D A, CHADWICK M B, CAPOTE R, et al. ENDF/B-VIII. 0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data[J]. Nuclear Data Sheets, 2018, 148: 1-142. doi: 10.1016/j.nds.2018.02.001 [10] 骆浩,刘召远,黄善仿,等. 基于RMC的输运燃耗活化耦合计算及铍反射层毒物积累问题研究[C]//先进核能技术全国重点实验室2024年学术年会. 成都: 中国核动力研究设计院,2024. [11] TOMBERLIN T A. Beryllium-a unique material in nuclear applications: INEEL/CON-04-01869[R]. Idaho Falls, Idaho: Idaho National Laboratory, 2004. -