Processing and Verification of Shielding Library Applicable for Fast Reactor
-
摘要: 传统压水堆屏蔽计算中,一般使用BUGLE96或其前身库,该屏蔽库已得到广泛验证与工程应用,但该库是针对典型压水堆、沸水堆屏蔽结构和物理特性制作,并不适用于快堆,因此针对快堆屏蔽计算需要依据其物理特性制作适用的屏蔽数据库。本文首先根据快堆中核素类型、运行工况、能谱特点,使用NJOY程序制作了中子199群-光子42群的耦合细群库,该细群库包含快堆中常用的65种元素、202种核素,具有7个温度点的截面数据,散射截面的勒让德展开阶数为P8阶,权重谱使用典型快堆能谱;之后对细群库并群,得到问题相关的中子47群-光子20群宽群库;最后,选取JANUSⅠ屏蔽基准题对该屏蔽数据库进行验证。径向反应率对比结果表明,32S(n,p)32P探测器的计算结果与实验值相对误差在±15%以内。103Rh(n,n')103Rhm探测器的计算结果与实验值相对误差在±10%以内,均可被实验值测量偏差包络;轴向相对反应率对比结果表明,32S(n,p)32P探测器的计算结果与实验值相对误差在±10%以内。103Rh(n,n')103Rhm探测器的计算结果与实验值相对误差在±15%以内,满足工程计算误差要求。因此,本文制作的屏蔽数据库适用于快堆的屏蔽计算,后续可以应用于先进快堆的屏蔽设计。Abstract: In the shielding calculation of PWR, BUGLE96 or its predecessor library is generally used, which has been widely verified and applied in engineering. However, the library is made for typical PWR and BWR by considering their shielding structure and physical properties, thus is not applicable to fast reactors. Therefore, it is necessary to develop a suitable shielding library according to the fast reactor's physical properties for its shielding calculation. In this paper, the coupled 199-group neutron and 42-group photon fine-group library is made according to the nuclide types, conditions and energy spectrum characteristics of fast reactors by using the NJOY code. The fine-group library contains 65 elements and 202 nuclides commonly used in fast reactors, the cross-section data has 7 temperature points, the Legendre expansion order of the scattering cross-section is P8, and the typical fast reactor energy spectrum is used as the weight spectrum. The fine-group library is then collapsed into a 47-group neutron and 20-group photon broad-group library. Finally, the shielding library is verified by the JANUS-I fast-spectrum benchmark. The results of radial reaction rate show that for the 32S(n,p)32P detector, the calculated values are within ±15% error to the experimental values, and for the 103Rh(n,n')103Rhm detector, the error is within ±10%. All errors can be covered by the experimental measurement deviations. The results of axial relative reaction rate show that for the 32S(n,p)32P detector, the calculated values are within ±10% error to the experimental values, and for the 103Rh(n,n')103Rhm detector, the error is within ±15%. The error meets the requirements of engineering calculation errors. Therefore, the shielding cross-section library processed in this paper is applicable to the shielding calculation of fast reactors and can be subsequently applied to the shielding design of advanced fast reactors.
-
Key words:
- Shielding calculation /
- Nuclear data processing /
- Shielding library
-
表 1 32S(n,p)32P探测器轴向相对反应率计算值与实验值对比
Table 1. Comparison of Calculated and Experimental Axial Relative Reaction Rates for 32S(n,p)32P Detector
距离装置水平
中心线的距离/cm相对反应率 B6 B10 B14 实验值 计算值 实验值 计算值 实验值 计算值 50 0.354 0.331 0.388 0.359 0.483 0.386 25 0.846 0.837 0.831 0.83 0.955 0.828 0 1.000 1.000 1.000 1.000 1.000 1.000 –25 0.802 0.815 0.81 0.809 0.846 0.808 –50 0.303 0.305 0.347 0.336 0.419 0.366 表 2 103Rh(n,n')103Rhm探测器轴向相对反应率计算值与实验值对比
Table 2. Comparison of Calculated and Experimental Axial Relative Reaction Rates for 103Rh(n,n')103Rhm Detector
距离装置水平
中心线的距离/cm相对反应率 B6 B10 B14 实验值 计算值 实验值 计算值 实验值 计算值 50 0.399 0.383 0.455 0.435 0.52 0.399 25 0.829 0.835 0.831 0.839 0.846 0.829 0 1.000 1.000 1.000 1.000 1.000 1.000 –25 0.804 0.815 0.799 0.822 0.835 0.804 –50 0.355 0.361 0.419 0.415 0.486 0.355 -
[1] CARLSON B G. Solution of the transport equation by Sn approximations: LA-1599[R]. Los Alamos: Los Alamos Scientific Laboratory, 1955. [2] RHOADES W A, CHILDS R L. TORT: a three-dimensional discrete ordinates neutron/photon transport code[J]. Nuclear Science and Engineering, 1991, 107(4): 397-398. doi: 10.13182/NSE91-A23802 [3] WHITE J E, INGERSOLL D T, SLATER C O, et al. BUGLE-96: a revised multigroup cross section library for LWR applications based on ENDF/B-VI release 3[R]. Oak Ridge: Oak Ridge National Laboratory, 1996: 620-622. [4] BROWN D A, CHADWICK M B, CAPOTE R, et al. ENDF/B-VIII. 0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data[J]. Nuclear Data Sheets, 2018, 148: 1-142. doi: 10.1016/j.nds.2018.02.001 [5] CONLIN J L, KAHLER A C, MCCARTNEY A P, et al. NJOY21: next generation nuclear data processing capabilities[J]. EPJ Web of Conferences, 2017, 146: 09040. doi: 10.1051/epjconf/201714609040 [6] ZOHURI B. Neutronic analysis for nuclear reactor systems[M]. Cham: Spring, 2017: 307-353. [7] FAVORITE J A. Transport corrections and sensitivities in the discrete-ordinates method[J]. Nuclear Science and Engineering, 2022, 196(2): 144-160. doi: 10.1080/00295639.2021.1968224 [8] CHENG T P, MO Z Y, YANG C, et al. JSNT-S: a parallel 3D discrete ordinates radiation transport code on structured mesh[C]//Proceedings of the 26th International Conference on Nuclear Engineering. London: ASME, 2018: 22-26. [9] HAJJI A, COQUELET-PASCAL C, BLAISE P. Monte-Carlo interpretation of the JANUS Phase 1, Phase 2 and Phase 4 shielding experiments with TRIPOLI-4®[J]. Annals of Nuclear Energy, 2021, 159: 108333. doi: 10.1016/j.anucene.2021.108333 -