高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于物理信息神经网络方法求解中子扩散方程本征值问题

肖勇 周夏峰

肖勇, 周夏峰. 基于物理信息神经网络方法求解中子扩散方程本征值问题[J]. 核动力工程, 2025, 46(S1): 288-295. doi: 10.13832/j.jnpe.2025.S1.0288
引用本文: 肖勇, 周夏峰. 基于物理信息神经网络方法求解中子扩散方程本征值问题[J]. 核动力工程, 2025, 46(S1): 288-295. doi: 10.13832/j.jnpe.2025.S1.0288
Xiao Yong, Zhou Xiafeng. Physics-Informed Neural Network Methods for Solving Eigenvalue Problems in Neutron Diffusion Equations[J]. Nuclear Power Engineering, 2025, 46(S1): 288-295. doi: 10.13832/j.jnpe.2025.S1.0288
Citation: Xiao Yong, Zhou Xiafeng. Physics-Informed Neural Network Methods for Solving Eigenvalue Problems in Neutron Diffusion Equations[J]. Nuclear Power Engineering, 2025, 46(S1): 288-295. doi: 10.13832/j.jnpe.2025.S1.0288

基于物理信息神经网络方法求解中子扩散方程本征值问题

doi: 10.13832/j.jnpe.2025.S1.0288
详细信息
    作者简介:

    肖 勇(2001—),男,硕士研究生,现主要从事核反应堆数值计算及程序开发工作,E-mail: M202371292@hust.edu.cn

    通讯作者:

    周夏峰,E-mail: zhouxiafeng@hust.edu.cn

  • 中图分类号: TL329;TP183

Physics-Informed Neural Network Methods for Solving Eigenvalue Problems in Neutron Diffusion Equations

  • 摘要: 为推动物理信息神经网络(PINNs)在堆芯物理计算中的实际应用,并实现深度学习方法与核物理模型的深度融合,提升其在复杂物理系统中的应用潜力,本文提出了一种适用于多种物质排布的多群中子扩散本征值神经网络模型。该模型基于物质区域特征采样设计自适应权重策略,且无需对中子通量密度进行归一化处理。通过对单群多物质算例和两群BIBLIS基准题的求解计算结果表明:两者有效增殖系数绝对误差分别为529.6pcm(1pcm=10−5)和112.5pcm,且各组件功率相对误差均小于5%,初步验证了本文模型的准确性和有效性。本文研究通过物理约束与神经网络模型的有机结合,为复杂堆芯的数值模拟提供了一条新的技术路径,有望促进深度学习方法在反应堆物理设计、安全分析及多物理场耦合计算中的工程化应用。

     

  • 图  1  PINNs基本框架

    Figure  1.  Basic Framework of PINNs

    图  2  多群中子扩散本征值神经网络模型流程图

    Figure  2.  Flowchart of Multi-group Neutron Diffusion Eigenvalue Neural Network Model

    图  3  单群算例几何模型

    Figure  3.  Geometric Configuration of the Single-group Case

    图  4  单群算例归一化中子通量密度计算结果

    Figure  4.  Normalized Neutron Flux Calculation Results of the Single-group Case

    图  5  单群算例归一化功率计算结果

    Figure  5.  Normalized Power Calculation Results of the Single-group Case

    图  6  两群BIBLIS基准题几何模型

    1~8—不同材料的编号。

    Figure  6.  Geometric Configuration of the Two-group BIBLIS Case

    图  7  两群BIBLIS算例归一化中子通量密度计算结果

    Figure  7.  Normalized Neutron Flux Calculation Results of the Two-group BIBLIS Case

    图  8  两群BIBLIS基准题归一化功率计算结果

    Figure  8.  Normalized Power Calculation Results of the Two-group BIBLIS Case

    表  1  单群算例各材料截面数据

    Table  1.   Cross Sectional Data for Each Material in the Single-group Case

    材料Σa /cm−1Σs /cm−1f /cm−1
    石墨0.1500.500
    燃料0.0750.530.079
    0.0100.890
    下载: 导出CSV

    表  2  单群算例keff及归一化中子通量密度/归一化功率L2相对误差计算结果

    Table  2.   Numerical Results of keff and L2 Relative Error of Normalized Neutron Flux and Normalized Power for Single-group Case

    $ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $ L2相对误差/%
    参考解 模型解 绝对误差/pcm 归一化中子
    通量密度
    归一化功率
    1.011791 1.006495 529.6 3.031 2.441
    下载: 导出CSV

    表  3  两群BIBLIS各材料截面数据

    Table  3.   Cross Sectional Data for Each Material in the Two-group BIBLIS Case

    材料gDg /cmΣa,g /cm−1(f)g /cm−1Σs,1→2 /cm−1
    111.43600.0095040.0058710.01775
    20.36350.0750060.0960670
    211.43660.0096790.0061910.01762
    20.36360.0784360.1035800
    311.32000.00265600.02311
    20.27720.07159600
    411.43890.0103630.0074530.01710
    20.36380.0914080.1323600
    511.43810.0100030.0061910.01729
    20.36650.0848280.1035800
    611.43850.0101320.0064290.01719
    20.36650.0873140.1091100
    711.43890.0101650.0061910.01713
    20.36790.0880240.1035800
    811.43930.0102940.0064290.01703
    20.36800.0905100.1091100
    下载: 导出CSV

    表  4  两群BIBLIS基准题keff及归一化中子通量密度/归一化功率L2相对误差计算结果

    Table  4.   Numerical Results of keff and L2 Relative Error of Normalized Neutron Flux and Normalized Power for Two-group BIBLIS Case

    $ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $ L2相对误差/%
    参考解 模型解 绝对误差/pcm 快群归一化中子通量密度 热群归一化中子通量密度 归一化功率
    1.025103 1.023978 112.5 2.257 2.186 2.258
    下载: 导出CSV
  • [1] 吴文斌,于颖锐,向宏志,等. 基于大规模并行计算的三维多群中子扩散方程有限差分方法[J]. 强激光与粒子束,2017, 29(8): 086001. doi: 10.11884/HPLPB201729.160328
    [2] GE J, ZHANG D L, TIAN W X, et al. Steady and transient solutions of neutronics problems based on finite volume method (FVM) with a CFD code[J]. Progress in Nuclear Energy, 2015, 85: 366-374. doi: 10.1016/j.pnucene.2015.07.012
    [3] CIARLET Jr P, GIRET L, JAMELOT E, et al. Numerical analysis of the mixed finite element method for the neutron diffusion eigenproblem with heterogeneous coefficients[J]. ESAIM: Mathematical Modelling and Numerical Analysis, 2018, 52(5): 2003-2035. doi: 10.1051/m2an/2018011
    [4] ZHOU X F, LI F. Jacobian-free Newton-Krylov nodal expansion methods with physics-based preconditioner and local elimination for three-dimensional and multigroup k-eigenvalue problems[J]. Nuclear Science and Engineering, 2018, 190(3): 238-257. doi: 10.1080/00295639.2018.1435136
    [5] 刘东,罗琦,唐雷,等. 基于PINN深度机器学习技术求解多维中子学扩散方程[J]. 核动力工程,2022, 43(2): 1-8.
    [6] ELHAREEF M H, WU Z Y. Physics-informed neural network method and application to nuclear reactor calculations: a pilot study[J]. Nuclear Science and Engineering, 2023, 197(4): 601-622. doi: 10.1080/00295639.2022.2123211
    [7] XIE Y C, WANG Y H, MA Y, et al. Neural network based deep learning method for multi-dimensional neutron diffusion problems with novel treatment to boundary[J]. Journal of Nuclear Engineering, 2021, 2(4): 533-552. doi: 10.3390/jne2040036
    [8] YANG Y, GONG H L, ZHANG S Q, et al. A data-enabled physics-informed neural network with comprehensive numerical study on solving neutron diffusion eigenvalue problems[J]. Annals of Nuclear Energy, 2023, 183: 109656. doi: 10.1016/j.anucene.2022.109656
    [9] WANG J Y, PENG X J, CHEN Z, et al. Surrogate modeling for neutron diffusion problems based on conservative physics-informed neural networks with boundary conditions enforcement[J]. Annals of Nuclear Energy, 2022, 176: 109234. doi: 10.1016/j.anucene.2022.109234
    [10] YANG Q H, YANG Y, DENG Y T, et al. Physics-constrained neural network for solving discontinuous interface K-eigenvalue problem with application to reactor physics[J]. Nuclear Science and Techniques, 2023, 34(10): 161. doi: 10.1007/s41365-023-01313-0
    [11] BUCHAN A G, PAIN C C, FANG F, et al. A POD reduced‐order model for eigenvalue problems with application to reactor physics[J]. International Journal for Numerical Methods in Engineering, 2013, 95(12): 1011-1032. doi: 10.1002/nme.4533
    [12] DE MOURA MENESES A A, ARAUJO L M, NAST F N, et al. Application of metaheuristics to Loading Pattern Optimization problems based on the IAEA-3D and BIBLIS-2D data[J]. Annals of Nuclear Energy, 2018, 111: 329-339. doi: 10.1016/j.anucene.2017.09.008
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  1
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-19
  • 修回日期:  2025-04-14
  • 刊出日期:  2025-06-15

目录

    /

    返回文章
    返回