Citation: | Li Dan, Yang Daibo, Li Kun, Li Gang, Jia Yige, Yao Zhang, Li Ang. Effect of Nucleation Density Model on CHF of Curved Surface[J]. Nuclear Power Engineering, 2021, 42(4): 56-62. doi: 10.13832/j.jnpe.2021.04.0056 |
[1] |
SULATSKII A A, CHERNYI O D, EFIMOV V K. Investigation of the crisis of heat transfer under conditions of boiling on an inclined surface facing downward[J]. High Temperature, 2002, 40(6): 912-918. doi: 10.1023/A:1021441603861
|
[2] |
CHEUNG F B, HADDAD K H, LIU Y C. Critical heat flux (CHF) phenomenon on a downward facing curved surface[R]. Washington: NRC, 1997.
|
[3] |
文青龙,陈军,卢冬华,等. 倾斜下朝向加热表面汽泡行为可视化实验研究[J]. 核动力工程,2012, 33(3): 51-55. doi: 10.3969/j.issn.0258-0926.2012.03.011
|
[4] |
THEOFANOUS T G, LIU C, ANGELINI S, et al. Experience from the first two integrated approaches to in-vessel retention through external cooling[C]//OECD/CSNI/NEA Workshop on Large Molten Pool Heat Transfer. Grenoble: Nuclear Research Centre, 1994.
|
[5] |
THEOFANOUS T G, SYRI S. The coolability limits of a reactor pressure vessel lower head[J]. Nuclear Engineering and Design, 1997, 169(1-3): 59-76. doi: 10.1016/S0029-5493(97)00024-1
|
[6] |
KYMÄLÄINEN O, TUOMISTO H, THEOFANOUS T G. In-vessel retention of corium at the Loviisa plant[J]. Nuclear Engineering and Design, 1997, 169(1-3): 109-130. doi: 10.1016/S0029-5493(96)01280-0
|
[7] |
THEOFANOUS T G, TU J P, SALMASSI T, et al. Quantification of limits to coolability in ULPU-2000 Configuration Ⅳ: CRSS-02.05.3[R]. California: University of California, 2002.
|
[8] |
DINH T N, TU J P, SALMASSI T, et al. Limits of the coolability in the AP1000-related ULPU-2400 Configuration V facility[C]. Korea: Proceedings of the 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics(NURETH-10). Seoul, 2003.
|
[9] |
汪广怀. 弧形表面临界热流密度数值研究[D]. 合肥: 中国科学技术大学, 2017.
|
[10] |
LEMMERT M, CHAWLA J M. Influence of flow velocity on surface boiling heat transfer coefficient[M]. HAHNE E, GRIGULL U. Heat Transfer in Boiling. New York: Academic Press, 1977.
|
[11] |
BASU N, WARRIER G R, DHIR V K. Onset of nucleate boiling and active nucleation site density during subcooled flow boiling[J]. Journal of Heat Transfer, 2002, 124(4): 717-728. doi: 10.1115/1.1471522
|
[12] |
BORISHANSKII V M, BOBROVICH G I, MINCHENKO F P. Heat transfer from a tube to water and to ethanol in nucleate pool boiling[M]//KUTATELADZE S S. Problems of Heat Transfer and Hydraulics of Two-Phase Media. Amsterdam: Elsevier, 1969: 85-106.
|
[13] |
LI Q, JIAO Y J, AVRAMOVA M, et al. Development, verification and application of a new model for active nucleation site density in boiling systems[J]. Nuclear Engineering and Design, 2018, 328: 1-9. doi: 10.1016/j.nucengdes.2017.12.027
|
[14] |
ADAMSON A W. Potential distortion model for contact angle and spreading. Ⅱ. Temperature dependent effects[J]. Journal of Colloid and Interface Science, 1973, 44(2): 273-281. doi: 10.1016/0021-9797(73)90219-1
|
[15] |
倪亮. 自然循环中朝下曲表面临界热流密度试验研究[D]. 上海: 上海交通大学, 2013.
|