Advance Search
Volume 42 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Li Dan, Yang Daibo, Li Kun, Li Gang, Jia Yige, Yao Zhang, Li Ang. Effect of Nucleation Density Model on CHF of Curved Surface[J]. Nuclear Power Engineering, 2021, 42(4): 56-62. doi: 10.13832/j.jnpe.2021.04.0056
Citation: Li Dan, Yang Daibo, Li Kun, Li Gang, Jia Yige, Yao Zhang, Li Ang. Effect of Nucleation Density Model on CHF of Curved Surface[J]. Nuclear Power Engineering, 2021, 42(4): 56-62. doi: 10.13832/j.jnpe.2021.04.0056

Effect of Nucleation Density Model on CHF of Curved Surface

doi: 10.13832/j.jnpe.2021.04.0056
  • Received Date: 2020-11-23
  • Rev Recd Date: 2021-02-26
  • Publish Date: 2021-08-15
  • In the event of a serious accident, external cooling can be applied to the lower head of the reactor pressure vessel (RPV) in order to reduce the possibility of damage to the lower head. However, there will be great heat flow surrounding the lower head of the RPV, so external cooling may cause subcooled boiling, which gathers bubbles and deteriorates heat exchange, even burns out. This research uses ANSYS Fluent to calculate the critical heat flux (CHF) for external cooling of the RPV, and it is found that the nucleation density model studied by Basu Warrier and Dhir can be well applied to the calculation of CHF on the spherical surface. By comparing the CHF of the spherical and ellipsoidal lower head, it is believed that the CHF characteristics of the ellipsoidal lower head are completely different from the spherical structure. The experimental and calculation results of the spherical structure cannot be used to infer the numerical value and variation of the ellipsoidal structure.

     

  • loading
  • [1]
    SULATSKII A A, CHERNYI O D, EFIMOV V K. Investigation of the crisis of heat transfer under conditions of boiling on an inclined surface facing downward[J]. High Temperature, 2002, 40(6): 912-918. doi: 10.1023/A:1021441603861
    [2]
    CHEUNG F B, HADDAD K H, LIU Y C. Critical heat flux (CHF) phenomenon on a downward facing curved surface[R]. Washington: NRC, 1997.
    [3]
    文青龙,陈军,卢冬华,等. 倾斜下朝向加热表面汽泡行为可视化实验研究[J]. 核动力工程,2012, 33(3): 51-55. doi: 10.3969/j.issn.0258-0926.2012.03.011
    [4]
    THEOFANOUS T G, LIU C, ANGELINI S, et al. Experience from the first two integrated approaches to in-vessel retention through external cooling[C]//OECD/CSNI/NEA Workshop on Large Molten Pool Heat Transfer. Grenoble: Nuclear Research Centre, 1994.
    [5]
    THEOFANOUS T G, SYRI S. The coolability limits of a reactor pressure vessel lower head[J]. Nuclear Engineering and Design, 1997, 169(1-3): 59-76. doi: 10.1016/S0029-5493(97)00024-1
    [6]
    KYMÄLÄINEN O, TUOMISTO H, THEOFANOUS T G. In-vessel retention of corium at the Loviisa plant[J]. Nuclear Engineering and Design, 1997, 169(1-3): 109-130. doi: 10.1016/S0029-5493(96)01280-0
    [7]
    THEOFANOUS T G, TU J P, SALMASSI T, et al. Quantification of limits to coolability in ULPU-2000 Configuration Ⅳ: CRSS-02.05.3[R]. California: University of California, 2002.
    [8]
    DINH T N, TU J P, SALMASSI T, et al. Limits of the coolability in the AP1000-related ULPU-2400 Configuration V facility[C]. Korea: Proceedings of the 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics(NURETH-10). Seoul, 2003.
    [9]
    汪广怀. 弧形表面临界热流密度数值研究[D]. 合肥: 中国科学技术大学, 2017.
    [10]
    LEMMERT M, CHAWLA J M. Influence of flow velocity on surface boiling heat transfer coefficient[M]. HAHNE E, GRIGULL U. Heat Transfer in Boiling. New York: Academic Press, 1977.
    [11]
    BASU N, WARRIER G R, DHIR V K. Onset of nucleate boiling and active nucleation site density during subcooled flow boiling[J]. Journal of Heat Transfer, 2002, 124(4): 717-728. doi: 10.1115/1.1471522
    [12]
    BORISHANSKII V M, BOBROVICH G I, MINCHENKO F P. Heat transfer from a tube to water and to ethanol in nucleate pool boiling[M]//KUTATELADZE S S. Problems of Heat Transfer and Hydraulics of Two-Phase Media. Amsterdam: Elsevier, 1969: 85-106.
    [13]
    LI Q, JIAO Y J, AVRAMOVA M, et al. Development, verification and application of a new model for active nucleation site density in boiling systems[J]. Nuclear Engineering and Design, 2018, 328: 1-9. doi: 10.1016/j.nucengdes.2017.12.027
    [14]
    ADAMSON A W. Potential distortion model for contact angle and spreading. Ⅱ. Temperature dependent effects[J]. Journal of Colloid and Interface Science, 1973, 44(2): 273-281. doi: 10.1016/0021-9797(73)90219-1
    [15]
    倪亮. 自然循环中朝下曲表面临界热流密度试验研究[D]. 上海: 上海交通大学, 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(7)

    Article Metrics

    Article views (322) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return