Citation: | Lei Jichong, Xie Jinsen, Yu Tao, Zhou Jiandong, Chen Zhenping, Zhao Pengcheng, Xie Chao, Ni Zining. Study of Assembly Nuclide Density Prediction Based on Data Mining Technology[J]. Nuclear Power Engineering, 2021, 42(4): 126-132. doi: 10.13832/j.jnpe.2021.04.0126 |
[1] |
彭超,丁谦学,梅其良,等. 压水堆燃耗库的开发与验证[J]. 核科学与工程,2020, 40(3): 375-382. doi: 10.3969/j.issn.0258-0918.2020.03.004
|
[2] |
雷济充,谢金森,于涛,等. Cosine软件包组件参数程序Coslatc燃耗功能的验证[J]. 南华大学学报(自然科学版),2020, 34(4): 1-6, 19.
|
[3] |
武俊梅,苏光辉. 临界热流密度的人工神经网络预测法[J]. 核动力工程,2007, 28(1): 41-44. doi: 10.3969/j.issn.0258-0926.2007.01.010
|
[4] |
谭智雄. 基于NSGA-Ⅱ算法及机器学习的压水堆组件装载方案优化研究[D]. 广州: 华南理工大学, 2019.
|
[5] |
ORTIZ J J, REQUENA I. Using a multi-state recurrent neural network to optimize loading patterns in BWRs[J]. Annals of Nuclear Energy, 2004, 1(7): 789-803.
|
[6] |
PIROUZMAND A, DEHDASHTI M K. Estimation of relative power distribution and power peaking factor in a VVER-1000 reactor core using artificial neural networks[J]. Progress in Nuclear Energy, 2015(85): 17-27.
|
[7] |
SANTOSH T V, VINOD G, SARAF R K, et al. Application of artificial neural networks to nuclear power plant transient diagnosis[J]. Reliability Engineering & System Safety, 2017, 92(10): 1468-1472.
|
[8] |
谢春丽,夏虹,刘永阔,等. BP神经网络改进算法在核电设备故障诊断中的应用[J]. 核动力工程,2007, 28(04): 85-90. doi: 10.3969/j.issn.0258-0926.2007.04.020
|
[9] |
周剑东,谢金森,曾文杰,等. 基于决策树的堆芯物理参数预测研究[J]. 原子能科学技术,2020, 54(02): 296-301.
|
[10] |
TAN P N, STEINBACH M, KUMAR V. 数据挖掘导论: 完整版[M]. 北京: 人民邮电出版社, 2011: 89-105.
|
[11] |
李忠武. 数据挖掘中线性回归分析的研究[J]. 保山学院学报,2017, 36(2): 54-56. doi: 10.3969/j.issn.1674-9340.2017.02.015
|
[12] |
吴爽. 基于回归树模型的推荐技术研究和应用[D]. 南京: 南京大学, 2018.
|
[13] |
何平. 基于深度学习的图像识别算法研究[D]. 贵阳: 贵州大学, 2019.
|
[14] |
李扬,祁乐,聂佩芸. 大规模数据的随机森林算法[J]. 统计与信息论坛,2020, 35(6): 24-33. doi: 10.3969/j.issn.1007-3116.2020.06.004
|
[15] |
于涛,刘金聚,谢金森,等. 锕系可燃毒物板状燃料组件燃耗特性研究[J]. 核动力工程,2020, 41(3): 1-7.
|
[16] |
MARLEAU G, HÉBERT A, ROY R. A user guide for DRAGON Version 4[R]. Canada: Institute of Genius Nuclear: Department of Genius Mechanical, 2011.
|