Advance Search
Volume 42 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Lei Jichong, Xie Jinsen, Yu Tao, Zhou Jiandong, Chen Zhenping, Zhao Pengcheng, Xie Chao, Ni Zining. Study of Assembly Nuclide Density Prediction Based on Data Mining Technology[J]. Nuclear Power Engineering, 2021, 42(4): 126-132. doi: 10.13832/j.jnpe.2021.04.0126
Citation: Lei Jichong, Xie Jinsen, Yu Tao, Zhou Jiandong, Chen Zhenping, Zhao Pengcheng, Xie Chao, Ni Zining. Study of Assembly Nuclide Density Prediction Based on Data Mining Technology[J]. Nuclear Power Engineering, 2021, 42(4): 126-132. doi: 10.13832/j.jnpe.2021.04.0126

Study of Assembly Nuclide Density Prediction Based on Data Mining Technology

doi: 10.13832/j.jnpe.2021.04.0126
  • Received Date: 2020-07-10
  • Rev Recd Date: 2020-08-10
  • Available Online: 2021-08-09
  • Publish Date: 2021-08-15
  • The DRAGON program was used to calculate 9600 samples, and the nuclide densities of 235U, 238U, 239Pu, 241Pu, 137Cs, 244Cm and 154Nd nuclides were used as the prediction parameters. Linear regression model, regression tree model constructed based on decision tree, multilayer perception (MLP) model and random forest model were selected to carry out model training. Pearson correlation coefficient (PCC), mean absolute error (MAE), relative absolute error (RAE) and relative root mean square error (RRSE) were chosen to evaluate the fitting effect of the models; the trained models were used in the test set for the target. The trained models were used to predict the target nuclides in the test set, and their prediction accuracy was evaluated by relative errors. The results show that the training time of the data models is less than 3 s. After the evaluation of the selected parameters, the MLP model has the best training effect among the four models for all the predicted kernels, and its correlation is above 0.999. The average deviation of the MLP model for all the predicted kernels is less than 1%. This paper initially verifies the feasibility of data mining techniques in predicting the density of assembly nuclei.

     

  • loading
  • [1]
    彭超,丁谦学,梅其良,等. 压水堆燃耗库的开发与验证[J]. 核科学与工程,2020, 40(3): 375-382. doi: 10.3969/j.issn.0258-0918.2020.03.004
    [2]
    雷济充,谢金森,于涛,等. Cosine软件包组件参数程序Coslatc燃耗功能的验证[J]. 南华大学学报(自然科学版),2020, 34(4): 1-6, 19.
    [3]
    武俊梅,苏光辉. 临界热流密度的人工神经网络预测法[J]. 核动力工程,2007, 28(1): 41-44. doi: 10.3969/j.issn.0258-0926.2007.01.010
    [4]
    谭智雄. 基于NSGA-Ⅱ算法及机器学习的压水堆组件装载方案优化研究[D]. 广州: 华南理工大学, 2019.
    [5]
    ORTIZ J J, REQUENA I. Using a multi-state recurrent neural network to optimize loading patterns in BWRs[J]. Annals of Nuclear Energy, 2004, 1(7): 789-803.
    [6]
    PIROUZMAND A, DEHDASHTI M K. Estimation of relative power distribution and power peaking factor in a VVER-1000 reactor core using artificial neural networks[J]. Progress in Nuclear Energy, 2015(85): 17-27.
    [7]
    SANTOSH T V, VINOD G, SARAF R K, et al. Application of artificial neural networks to nuclear power plant transient diagnosis[J]. Reliability Engineering & System Safety, 2017, 92(10): 1468-1472.
    [8]
    谢春丽,夏虹,刘永阔,等. BP神经网络改进算法在核电设备故障诊断中的应用[J]. 核动力工程,2007, 28(04): 85-90. doi: 10.3969/j.issn.0258-0926.2007.04.020
    [9]
    周剑东,谢金森,曾文杰,等. 基于决策树的堆芯物理参数预测研究[J]. 原子能科学技术,2020, 54(02): 296-301.
    [10]
    TAN P N, STEINBACH M, KUMAR V. 数据挖掘导论: 完整版[M]. 北京: 人民邮电出版社, 2011: 89-105.
    [11]
    李忠武. 数据挖掘中线性回归分析的研究[J]. 保山学院学报,2017, 36(2): 54-56. doi: 10.3969/j.issn.1674-9340.2017.02.015
    [12]
    吴爽. 基于回归树模型的推荐技术研究和应用[D]. 南京: 南京大学, 2018.
    [13]
    何平. 基于深度学习的图像识别算法研究[D]. 贵阳: 贵州大学, 2019.
    [14]
    李扬,祁乐,聂佩芸. 大规模数据的随机森林算法[J]. 统计与信息论坛,2020, 35(6): 24-33. doi: 10.3969/j.issn.1007-3116.2020.06.004
    [15]
    于涛,刘金聚,谢金森,等. 锕系可燃毒物板状燃料组件燃耗特性研究[J]. 核动力工程,2020, 41(3): 1-7.
    [16]
    MARLEAU G, HÉBERT A, ROY R. A user guide for DRAGON Version 4[R]. Canada: Institute of Genius Nuclear: Department of Genius Mechanical, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(9)

    Article Metrics

    Article views (345) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return