Citation: | Guo Yanhui, Deng Dong, Sun Zaozhan, Huang Bingchen. Microstructure and Mechanical Properties of Heat-affected Zone of Repeated Welding on 304 Stainless Steel[J]. Nuclear Power Engineering, 2021, 42(4): 198-202. doi: 10.13832/j.jnpe.2021.04.0198 |
[1] |
MILLS W J. Fracture toughness of type 304 and 316 stainless steels and their welds[J]. International Materials Reviews, 1997, 42(2): 45-82. doi: 10.1179/imr.1997.42.2.45
|
[2] |
LANT T, ROBINSON D L, SPAFFORD B, et al. Review of weld repair procedures for low alloy steels designed to minimise the risk of future cracking[J]. International Journal of Pressure Vessels and Piping, 2001, 78(11-12): 813-818. doi: 10.1016/S0308-0161(01)00094-1
|
[3] |
YI H J, LEE Y J, LEE K O. Influences of the welding heat input and the repeated repair welding on Ti-3Al-2.5V titanium alloy[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(6): 684-691. doi: 10.1007/s40195-015-0248-2
|
[4] |
NASCIMENTO M P, VOORWALD H J C, FILHO J D C P. Effects of several TIG weld repairs on the axial fatigue strength of AISI 4130 aeronautical steel-welded joints[J]. Fatigue & Fracture of Engineering Materials & Structures, 2012, 35(3): 191-204.
|
[5] |
AGHAALI I, FARZAM M, GOLOZAR M A, et al. The effect of repeated repair welding on mechanical and corrosion properties of stainless steel 316L[J]. Materials & Design (1980-2015), 2014(54): 331-341.
|
[6] |
LIN C M, TSAI H L, CHENG C D, et al. Effect of repeated weld-repairs on microstructure, texture, impact properties and corrosion properties of AISI 304L stainless steel[J]. Engineering Failure Analysis, 2012(21): 9-20. doi: 10.1016/j.engfailanal.2011.11.014
|
[7] |
ASME. ASME Boiler & Pressure Vessel Code - Section 3:Rules for construction of nuclear facility components–Division 1:Subsection NB-2013[S]. New York: ASME International, 2013.
|
[8] |
AFCEN. Design and construction rules for mechanical components of PWR Island:RCC-M-2002[S]. France: FRAMATOME, 2002.
|
[9] |
FENG W, YANG S, YAN Y B. Dependence of grain boundary character distribution on the initial grain size of 304 austenitic stainless steel[J]. Philosophical Magazine, 2017, 97(13): 1057-1070. doi: 10.1080/14786435.2017.1288943
|
[10] |
LIPPOLD J C, SAVAGE W F. Solidification of austenitic stainless steel weldments: Part I-A proposed mechanism[C]. U.S.: AWS 60th Annual Meeting ,Detroit, Michigan, 1979
|
[11] |
TSENG C C, SHEN Y, THOMPSON S W, et al. Fracture and the formation of sigma phase, M23C6 and austenite from delta-ferrite in an AlSl 304L stainless steel[J]. Metallurgical and Materials Transactions A, 1994, 25(6): 1147-1158. doi: 10.1007/BF02652290
|
[12] |
FUKUOKA C, MORISHIMA K, YOSHIZAWA H, et al. Misorientation development in grains of tensile strained and crept 2.25%Cr-1%Mo steel[J]. Scripta Materialia, 2002, 46(1): 61-66. doi: 10.1016/S1359-6462(01)01197-6
|
[13] |
JANG C, CHO P Y, KIM M, et al. Effects of microstructure and residual stress on fatigue crack growth of stainless steel narrow gap welds[J]. Materials & Design, 2010(31): 1862-1870.
|