Advance Search
Volume 42 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Li Zhan, Zhou Xuhua, Ding Ming, Huang Jie. Comparative Analysis of Genetic Algorithms Based on Different Selection Strategies for Refueling Optimization in the Ratio Method[J]. Nuclear Power Engineering, 2021, 42(5): 23-29. doi: 10.13832/j.jnpe.2021.05.0023
Citation: Li Zhan, Zhou Xuhua, Ding Ming, Huang Jie. Comparative Analysis of Genetic Algorithms Based on Different Selection Strategies for Refueling Optimization in the Ratio Method[J]. Nuclear Power Engineering, 2021, 42(5): 23-29. doi: 10.13832/j.jnpe.2021.05.0023

Comparative Analysis of Genetic Algorithms Based on Different Selection Strategies for Refueling Optimization in the Ratio Method

doi: 10.13832/j.jnpe.2021.05.0023
  • Received Date: 2020-11-11
  • Rev Recd Date: 2021-06-21
  • Publish Date: 2021-09-30
  • The genetic algorithm is one of the classic algorithms applied to the refueling optimization. An important part of this algorithm is the selection strategies. The existing studies often directly adopt the roulette wheel selection and stochastic tournament selection, and are lacking in comparison and analysis of different selection strategies. To obtain the selection strategy with the strongest optimization capability, this study, with the 1/6 core of a thorium-based prismatic high-temperature gas-cooled reactor (HTGR) taken as an example, constructs the fitness function in the ratio method, performs core physics calculation using the DRAGON code, and in conjunction with the elitism strategy, compares the optimization capabilities of the five selection strategies, including the roulette wheel selection, stochastic tournament selection, uniform ranking method, exponential ranking selection and deterministic selection. The study results show that the optimization capability of the exponential ranking selection is superior to the other four strategies, so the exponential ranking selection is most suitable for solving the refueling optimization problems.

     

  • loading
  • [1]
    黄杰,李文强,丁铭. 遗传算法在柱状高温气冷堆换料优化问题中的应用[J]. 强激光与粒子束,2017, 29(1): 11-17.
    [2]
    夏冰,吕应中,经荥清,等. 熔盐球床堆堆芯燃料管理优化初步分析[J]. 原子能科学技术,2013, 47(增刊): 150-155.
    [3]
    刘仕倡,蔡杰进. 基于粒子群优化算法的压水堆换料优化初步研究[J]. 核动力工程,2013, 34(5): 1-5. doi: 10.3969/j.issn.0258-0926.2013.05.001
    [4]
    TAYEFI S, PAZIRANDEH A. Using hopfield neural network to optimize fuel rod loading patterns in VVER/1000 reactor by applying axial variation of enrichment distribution[J]. Applied Soft Computing Journal, 2014(21): 501-508.
    [5]
    周明, 孙树栋. 遗传算法原理及应用[M]. 北京: 国防工业出版社, 2000: 45-57.
    [6]
    咸春宇,左劼,于中华. 遗传算法在压水堆核电厂低泄漏换料堆芯装载方案优化中的应用[J]. 核动力工程,2002, 23(S1): 12-16.
    [7]
    JALUVKA D, EYNDE G V, VANDEWALLE S. Development of a core management tool for MYRRHA[J]. Energy Conversion and Management, 2013(74): 562-568.
    [8]
    ALIM F, IVANOV K N, YILMAZ S, et al. New genetic algorithms (GA) to optimize PWR reactors[J]. Annals of Nuclear Energy, 2007, 35(1): 113-120.
    [9]
    石秀安,胡永明. 我国钍燃料循环发展研究[J]. 核科学与工程,2011, 31(3): 281-288.
    [10]
    高立本,沈健. 高温气冷堆的发展与前景[J]. 中国核工业,2016(10): 24-26+55.
    [11]
    CHAPOT J L C, SILVA F C D, SCHIRRU R. A new approach to the use of genetic algorithms to solve the pressurized water reactor's fuel management optimization problem[J]. Annals of Nuclear Energy, 1999, 26(7): 641-655. doi: 10.1016/S0306-4549(98)00078-4
    [12]
    KUMAR A, TSVETKOV P V. A new approach to nuclear reactor design optimization using genetic algorithms and regression analysis[J]. Annals of Nuclear Energy, 2015(85): 27-35.
    [13]
    DESCOTES V M. Reactor physics of a deep-burner prismatic core for VHTR[D]. Montréal: Université de Montréal, 2011.
    [14]
    NOROUZI A, ZOLFAGHARI A, MINUCHEHR A H, et al. An enhanced integer coded genetic algorithm to optimize PWRs[J]. Progress in Nuclear Energy, 2011, 53(5): 449-456. doi: 10.1016/j.pnucene.2011.03.005
    [15]
    CHAKRABORTY M, CHAKRABORTY U K. An analysis of linear ranking and binary tournament selection in genetic algorithms[C]. Proceedings of ICICS, 1997 International Conference on Information, Communications and Signal Processing. Theme: Trends in Information Systems Engineering and Wireless Multimedia Communications, 1997, 1: 407-411.
    [16]
    TSAI M C, CAI Y X, WANG C D, et al. Tinnitus abnormal brain region detection based on dynamic causal modeling and exponential ranking[J]. BioMed Research International, 2018(2018): 1-10.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (480) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return