Advance Search
Volume 42 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Li Pengzhou, Li Yilei, Yao Di, Sun Lei, Qiao Hongwei. Study on Room Temperature Fracture Behavior of Main Pipeline Materials at Medium and Low Loading Rate[J]. Nuclear Power Engineering, 2021, 42(5): 123-127. doi: 10.13832/j.jnpe.2021.05.0123
Citation: Li Pengzhou, Li Yilei, Yao Di, Sun Lei, Qiao Hongwei. Study on Room Temperature Fracture Behavior of Main Pipeline Materials at Medium and Low Loading Rate[J]. Nuclear Power Engineering, 2021, 42(5): 123-127. doi: 10.13832/j.jnpe.2021.05.0123

Study on Room Temperature Fracture Behavior of Main Pipeline Materials at Medium and Low Loading Rate

doi: 10.13832/j.jnpe.2021.05.0123
  • Received Date: 2020-07-21
  • Rev Recd Date: 2021-03-20
  • Available Online: 2021-09-30
  • Publish Date: 2021-09-30
  • Cracks may occur at the base metal and welding joint of the main pipeline of a nuclear power plant (NPP) during the long-term service. Therefore, it is necessary to study the fracture behavior of the main pipeline material and welding material at medium and low loading rate to avoid the possible double-ended guillotine break of the main pipeline under strong earthquake impact. This study, relying on the Instron VHS high strain rate testing machine for materials, develops a set of testing method for fracture behavior of materials at medium and low loading rate, which in turn is used to measure the room temperature fracture behaviors of main pipeline nitrogen-containing material (00Cr17Ni12Mo2) and welding material (OK Tigrod 316L) within the loading rate of 0.5 m/s in a NPP. As observed from the results, under the room temperature, the main pipeline nitrogen-containing material (00Cr17Ni12Mo2) shows no crack initiation within the impact rate of 0.5 m/s, and the fracture toughness of the welding material (OK Tigrod 316L) indicates no obvious regular change within the loading rate of 0.5 m/s.

     

  • loading
  • [1]
    李强,岑鹏,甄洪栋. 核电厂高能管道LBB分析技术概述[J]. 核动力工程,2011(32): 189-191.
    [2]
    何风,吕勇波,艾红雷,等. LBB技术在核电站管道系统中的应用[J]. 管道技术与设备,2016(2): 1-4. doi: 10.3969/j.issn.1004-9614.2016.02.001
    [3]
    蒋东梅,杜颖,袁小兰. LBB在AP1000技术中的应用[J]. 南华大学学报(自然科学版),2015(29): 7-11.
    [4]
    乔红威,李琦,刘志伟,等. LBB设计中管道贯穿裂纹张开位移计泄漏率计算研究[J]. 核技术,2013(36): 040619.
    [5]
    RADON J C, TURNER C E. Fracture toughness measurements by instrumented impact test[J]. Engineering fracture mechanics, 1969(1): 411-428.
    [6]
    KABAYASHI A S, SEO K K. A dynamic analysis of modifier compact-tension specimen using homolite-100 and polycarbonate plates[J]. Experimental Mechanics, 1980(20): 73-79.
    [7]
    杨滨,轩福贞. 基于夏比冲击吸收能量的断裂韧性估算方法比较[J]. 压力容器,2016(33): 32-39.
    [8]
    潘建华,陈学东,韩豫. −196℃奥氏体不锈钢母材与焊缝的动态断裂韧性[J]. 爆炸与冲击,2013(33): 381-386.
    [9]
    SATHYANARAYANAN S, SINGH J, MOITRA A, et al. Effect of loading rate and constraint on dynamic ductile fracture toughness of P91 steel[M]. Proceedings of Fatigue, Durability and Fracture Mechanics, Springer Nature Singapore Pte Led. 2018: 185-201.
    [10]
    王琼皎,郭伟国,左红星,等. 超强钢18NiC250在不同加载速度下的断裂韧性[J]. 爆炸与冲击,2013(33): 238-242.
    [11]
    孟庆良,夏源明. 弹塑性材料裂纹扩展的动态J阻力曲线实验研究简介[J]. 机械强度,2004(26): 172-176.
    [12]
    许泽建,李玉龙,李娜,等. 加载速度对高强钢40Cr和30CrMnSiNi2A I型动态断裂韧性的影响[J]. 金属学报,2006(42): 965-970.
    [13]
    宫能平,李贤. 45#钢动态断裂韧性测试的试验研究[J]. 安徽理工大学学报(自然科学版),2007(27): 65-68.
    [14]
    崔新忠,范亚夫,纪伟,等. 用Hopkinson杆技术研究材料动态断裂韧性的进展[J]. 兵器材料科学与工程,2010(33): 418-427.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (122) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return