Advance Search
Volume 42 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Shi Bo, Li Daixing, Guo Wei, Zhang Yilin. Study on Multivariable Decoupling Control of Small PWR Pressurizer based on Active Disturbance Rejection Control[J]. Nuclear Power Engineering, 2021, 42(5): 143-148. doi: 10.13832/j.jnpe.2021.05.0143
Citation: Shi Bo, Li Daixing, Guo Wei, Zhang Yilin. Study on Multivariable Decoupling Control of Small PWR Pressurizer based on Active Disturbance Rejection Control[J]. Nuclear Power Engineering, 2021, 42(5): 143-148. doi: 10.13832/j.jnpe.2021.05.0143

Study on Multivariable Decoupling Control of Small PWR Pressurizer based on Active Disturbance Rejection Control

doi: 10.13832/j.jnpe.2021.05.0143
  • Received Date: 2020-09-08
  • Rev Recd Date: 2020-10-08
  • Available Online: 2021-09-30
  • Publish Date: 2021-09-30
  • Since the pressurizer (PZR) in a small pressurized water reactor (PWR) features non-linearity, time-dependence, and strong coupling, its accurate mathematical model is hard to build and the traditional control method cannot provide a satisfactory control effect. Therefore, this study describes a multivariable decoupling control method based on the active disturbance rejection control (ADRC) technique for such PZR. In this study, a non-equilibrium three-region model of PZR is built, and processed linearly based on the perturbation theory to generate the pressure and water level coupled transfer function equation. Then, an ADRC based decoupling controller is designed based on the transfer function, and the parameters of the controller are subjected to multi-objective optimization via differential evolution. Finally, the ADRC based decoupling control and traditional proportional-integral-derivative (PID) control for the same small reactor PZR are compared and analyzed by the MATLAB simulation platform. As demonstrate by the comparison, the ADRC based decoupling controller can effectively solve the PZR pressure and level coupling problem and has better robustness and interference immunity than the traditional PID controller. Therefore, this study provides a theoretical foundation for the engineering application of the ADRC method to the PZRs.

     

  • loading
  • [1]
    张益林,石波,赵福宇. 小型压水堆稳压器控制特性研究[J]. 核动力工程,2017, 38(6): 61-64.
    [2]
    HU P, ZHAO F Y, TAI Y. Coordination control and simulation for small nuclear power plant[J]. Progress in Nuclear Energy, 2012, 58: 21-26. doi: 10.1016/j.pnucene.2012.02.001
    [3]
    钱虹,周蕾,房振鲁. 压水堆核电站稳压器压力和水位的解耦控制研究[J]. 核科学与工程,2017, 37(1): 5-11. doi: 10.3969/j.issn.0258-0918.2017.01.002
    [4]
    薛定宇. 控制系统计算机辅助设计-MATLAB语言与应用[M]. 北京: 清华大学出版社, 2012: 303-308.
    [5]
    许志斌. 核电站稳压器机理建模分析及控制研究[D]. 广州: 华南理工大学, 2016: 52-54.
    [6]
    瞿小龙,张乃尧,贾宝山,等. 采用典型模糊控制器实现压水堆稳压器的综合控制[J]. 核动力工程,2005, 26(2): 163-166. doi: 10.3969/j.issn.0258-0926.2005.02.015
    [7]
    钱虹,苑源. 核电站稳压器压力非自衡系统的预测控制[J]. 核动力工程,2019, 40(3): 87-92.
    [8]
    韩京清. 自抗扰控制技术[M]. 北京: 国防工业出版社, 2008: 1-5.
    [9]
    黄焕袍. 自抗扰控制在火电厂主汽温控制中的应用[J]. 系统仿真学报,2005, 17(1): 241-244. doi: 10.3969/j.issn.1004-731X.2005.01.064
    [10]
    BAEK S M, NO H C. A non-equilibrium three-region model for transient analysis of pressurizer water reactor pressurizer[J]. Nuclear Technology, 1986, 74(9): 261-263.
    [11]
    尹水红. 自抗扰技术在多变量控制系统中的应用[D]. 北京: 华北电力大学, 2007: 32-39.
    [12]
    刘金琨. 先进PID控制MATLAB仿真[M]. 北京: 电子工业出版社, 2016: 330-340.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (408) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return