Advance Search
Volume 42 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Bai Xiuchun, Qian Hong. Study on Early Warning of Small Leakage in Primary Loop Based on Data Mining[J]. Nuclear Power Engineering, 2021, 42(5): 232-239. doi: 10.13832/j.jnpe.2021.05.0232
Citation: Bai Xiuchun, Qian Hong. Study on Early Warning of Small Leakage in Primary Loop Based on Data Mining[J]. Nuclear Power Engineering, 2021, 42(5): 232-239. doi: 10.13832/j.jnpe.2021.05.0232

Study on Early Warning of Small Leakage in Primary Loop Based on Data Mining

doi: 10.13832/j.jnpe.2021.05.0232
  • Received Date: 2020-08-18
  • Rev Recd Date: 2020-10-20
  • Publish Date: 2021-09-30
  • An excessive small leakage in the primary loop may cause serious accidents. In order to prevent such accidents, this study proposes an fault early-warning method of the improved Gaussian mixture model (GMM)-grey relational analysis (GRA)-entropy weighting method (EWM) based on the integration of multiple characteristic parameters. In this method, firstly, the mechanism of the dynamic operating characteristics of the small leakage in the primary loop is analyzed, and the early-warning characteristic parameters are thus determined. Then, based on these characteristic parameters, in combination with the EWM and GRA, a multi-parameter integrated early-warning model is established. Finally, the relational analysis and improved GMM algorithm are used to enable effective learning of the statistical features of massive data so that the early-warning thresholds can be self-adapted to different conditions. As this study shows, effective early warning can be realized in this method under variable operating conditions. Compared with single parameter and fixed threshold warning, this method is more stable and provides more accurate, effective and timely warning, and thus, it can provide a reference for the condition monitoring of the primary system.

     

  • loading
  • [1]
    CHEN X M, WU C X, WU Y, et al. Design and analysis for early warning of rotor UAV based on data-driven DBN[J]. Electronics, 2019, 8(11): 1350. doi: 10.3390/electronics8111350
    [2]
    向健平, 凌永志, 詹俊, 等. 基于SCADA系统的风电机组主轴承故障预警方法[J]. 电力科学与技术学报,2019, 34(3): 223-228. doi: 10.3969/j.issn.1673-9140.2019.03.028
    [3]
    CHEN G S, ZHENG Q Z. Online chatter detection of the end milling based on wavelet packet transform and support vector machine recursive feature elimination[J]. International Journal of Advanced Manufacturing Technology, 2017, 95(5): 1-10.
    [4]
    JIAN Y F, QING X G, ZHAO Y, et al. Application of model-based deep learning algorithm in fault diagnosis of coal mills[J/OL]. Mathematical Problems in Engineering, 2020. https://doi.org/ 10.1155/2020/3753274 DOI: 10.1155/2020/3753274.
    [5]
    ZHOU F, XU P C, LIN K. Early warning analysis of online vibration fault characteristics of motor base screw loosening based on similarity measurement theory[J/OL]. Archive of Applied Mechanics, 2020. https://doi.org/ 10.1007/s00419-020-01820-1. DOI: 10.1007/s00419-020-01820-1.
    [6]
    刘帅,刘长良,甄成刚. 基于数据分类重建的风电机组故障预警方法[J]. 仪器仪表学报,2019, 40(8): 1-11.
    [7]
    JIANG D, GONG J, GARE A. Design of early warning model based on time series data for production safety[J]. Measurement, 2017(101): 62-71.
    [8]
    刘耘彰. 电厂风机故障诊断与预警研究[D]. 杭州: 浙江大学, 2019.
    [9]
    牛玉广,李晓彬,张佳辉. 基于多元状态估计与自适应闽值的电站辅机故障预警[J]. 动力工程学报,2019, 39(9): 717-724. doi: 10.3969/j.issn.1674-7607.2019.09.005
    [10]
    潘瑾宜,杨婷,钱虹. 小型模块化反应堆冷却剂平均温度的预测控制方法[J]. 核动力工程,2020, 41(3): 62-67.
    [11]
    陈娟,马栋梁,周涛,等. 基于灰色关联度的超临界水自然循环换热系数影响因素分析[J]. 核动力工程,2017, 38(2): 19-23.
    [12]
    张艳艳. 基于熵权与灰色关联融合分析的模拟电路故障诊断研究[D]. 北京: 北京交通大学, 2019.
    [13]
    叶林,张亚丽,巨云涛,等. 用于含风电场的电力系统概率潮流计算的高斯混合模型[J]. 中国电机工程学报,2017, 37(15): 4379-4387+4578.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (165) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return