Citation: | Guo Tingshan, Liang Zhiyuan, Gui Yong, Zhao Qinxin. Corrosion Behavior Study of Fe-22Cr-25Ni Austenitic Heat-Resistant Steel under Supercritical CO2 Condition[J]. Nuclear Power Engineering, 2021, 42(6): 93-99. doi: 10.13832/j.jnpe.2021.06.0093 |
[1] |
MAHAFFEY J, SCHROEDER A, ADAM D, et al. Effects of CO and O2 impurities on supercritical CO2 corrosion of alloy 625[J]. Metallurgical and Materials Transactions A, 2018, 49(8): 3703-3714. doi: 10.1007/s11661-018-4727-8
|
[2] |
HOLCOMB G R, CARNEY C, DOĞAN ÖN. Oxidation of alloys for energy applications in supercritical CO2 and H2O[J]. Corrosion Science, 2016(109): 22-35. doi: 10.1016/j.corsci.2016.03.018
|
[3] |
鲁金涛,赵新宝,袁勇,等. 超临界二氧化碳布雷顿循环系统中材料的腐蚀行为[J]. 中国电机工程学报,2016, 36(3): 739-745.
|
[4] |
梁志远,桂雍,赵钦新. 超临界二氧化碳动力系统耐热材料高温腐蚀研究进展[J]. 装备环境工程,2020, 17(7): 88-93.
|
[5] |
OLEKSAK R P, ROUILLARD F. Materials performance in CO2 and supercritical CO2[J]. Comprehensive Nuclear Materials, 2020(4): 422-451.
|
[6] |
NYGREN K E, YU Z, ROUILLARD F, et al. Effect of sample thickness on the oxidation and carburization kinetics of 9Cr-1Mo steel in high and atmospheric pressure CO2 at 550℃[J]. Corrosion Science, 2020(163): 108292.1-108292.12.
|
[7] |
KIM S H, CHA J H, JANG C. Corrosion and creep behavior of a Ni-base alloy in supercritical-carbon dioxide environment at 650℃[J]. Corrosion Science, 2020(174): 108843.
|
[8] |
BRITTAN A, MAHAFFEY J, ANDERSON M. Corrosion and mechanical performance of grade 92 ferritic-martensitic steel after exposure to supercritical carbon dioxide[J]. Metallurgical and Materials Transactions A, 2020, 51(5): 2564-2572. doi: 10.1007/s11661-020-05691-7
|
[9] |
刘晓强,梅林波,帅师. 超临界二氧化碳中材料的腐蚀行为[J]. 热力透平,2020, 49(2): 143-147+168.
|
[10] |
FIROUZDOR V, SRIDHARAN K, CAO G, et al. Corrosion of a stainless steel and nickel-based alloys in high temperature supercritical carbon dioxide environment[J]. Corrosion Science, 2013(69): 281-291. doi: 10.1016/j.corsci.2012.11.041
|
[11] |
TAN L, ANDERSON M, TAYLOR D, et al. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide[J]. Corrosion Science, 2011, 53(10): 3273-3280. doi: 10.1016/j.corsci.2011.06.002
|
[12] |
CAO G, FIROUZDOR V, SRIDHARAN K, et al. Corrosion of austenitic alloys in high temperature supercritical carbon dioxide[J]. Corrosion Science, 2012(60): 246-255. doi: 10.1016/j.corsci.2012.03.029
|
[13] |
ROUILLARD F, FURUKAWA T. Corrosion of 9-12Cr ferritic-martensitic steels in high-temperature CO2[J]. Corrosion Science, 2016(105): 120-132. doi: 10.1016/j.corsci.2016.01.009
|
[14] |
LEE H J, KIM H, KIM S H, et al. Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment[J]. Corrosion Science, 2015(99): 227-239. doi: 10.1016/j.corsci.2015.07.007
|
[15] |
沈朝. 超临界水冷堆燃料包壳候选材料的腐蚀行为研究[D]. 上海: 上海交通大学, 2015: 38-41.
|
[16] |
梁志远,桂雍,赵钦新. 超临界二氧化碳条件下3种典型耐热钢腐蚀特性实验研究[J]. 西安交通大学学报,2019, 53(7): 23-29.
|
[17] |
SUBRAMANIAN G O, LEE H J, KIM S H, et al. Corrosion and carburization behaviour of ni-xcr binary alloys in a high-temperature supercritical-carbon dioxide environment[J]. Oxidation of Metals, 2017, 89(5-6): 683-697.
|
[18] |
MAHAFFEY J, ADAM D, BRITTAN A, et al. Corrosion of alloy haynes 230 in high temperature supercritical carbon dioxide with oxygen impurity additions[J]. Oxidation of Metals, 2016, 86(5-6): 567-580. doi: 10.1007/s11085-016-9654-8
|
[19] |
刘珠,郭相龙,王鹏,等. 310S不锈钢在超临界二氧化碳中的腐蚀行为研究[J]. 核动力工程,2020, 41(S1): 183-187.
|
[20] |
FIROUZDOR V, CAO G P, SRIDHARAN K, et al. Corrosion resistance of PM2000 ODS steel in high temperature supercritical carbon dioxide[J]. Materials and Corrosion, 2015, 66(2): 137-142. doi: 10.1002/maco.201307223
|