Advance Search
Volume 42 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Gong Zhao, Zhu Jingmei, Zhang Wei, Huang Ruolin, Zhu Minghua. Equipment Design and Research of the HPR1000 In-Containment Refueling Water Storage Tank Strainers Based on Single Variable Solution Method[J]. Nuclear Power Engineering, 2021, 42(6): 167-173. doi: 10.13832/j.jnpe.2021.06.0167
Citation: Gong Zhao, Zhu Jingmei, Zhang Wei, Huang Ruolin, Zhu Minghua. Equipment Design and Research of the HPR1000 In-Containment Refueling Water Storage Tank Strainers Based on Single Variable Solution Method[J]. Nuclear Power Engineering, 2021, 42(6): 167-173. doi: 10.13832/j.jnpe.2021.06.0167

Equipment Design and Research of the HPR1000 In-Containment Refueling Water Storage Tank Strainers Based on Single Variable Solution Method

doi: 10.13832/j.jnpe.2021.06.0167
  • Received Date: 2020-11-13
  • Rev Recd Date: 2020-12-17
  • Publish Date: 2021-12-09
  • In order to solve the pressure drop solution problem in the equipment design of HPR1000 In-containment Refueling Water Storage Tank (IRWST) strainers after accident, this paper proposed a method of single variable solution for the pressure drop of IRWST strainers: a resistance element was added between the strainer module and the collector pipe, thus the multiple groups of variables in the IRWST strainers pressure drop solution were converted into the single group of variables (the flow area of resistance elements), and the pressure drop solution of IRWST strainers was performed. The results showed that the debris amount and flowrate on each strainer module can be equal by using the single variable solution method, and the preliminary filtering area can be determined by calculating the pressure drop of IRWST strainers; the preliminary filtering area was verified by the debris pressure drop test, and the results satisfied the design requirements of safety systems.

     

  • loading
  • [1]
    邢继. 华龙一号能动与非能动相结合的先进压水堆核电厂[M]. 北京: 中国原子能出版社, 2016: 145-156.
    [2]
    USNRC. Water sources for long-term recirculation cooling following a loss-of-coolant accident, Regulatory guide 1.82[R]. Washington, DC: USNRC, 2012.
    [3]
    朱明华,张卫,朱京梅,等. 二代改进型核电机组地坑过滤器设计与RG 1.82第4版的相符性[J]. 中国核科学技术进展报告,2015(4): 406-413.
    [4]
    USNRC. Pressurized water reactor sump performance evaluation methodology, NEI 04-07[R]. Washington, DC: USNRC, 2004.
    [5]
    张卫,龚钊,朱京梅,等. 秦山核电二期扩建工程安全壳地坑过滤器设计改进及遗留问题分析[J]. 核动力工程,2013, 34(6): 128-131. doi: 10.3969/j.issn.0258-0926.2013.06.030
    [6]
    王庆礼,李海伦,韩志航,等. CPR1000安全壳地坑滤网上游分析[J]. 核科学与工程,2010(30): 203-210.
    [7]
    李石磊,谢洪虎,何英勇,等. 安全壳地坑过滤器压损数值模拟与试验研究[J]. 核科学与工程,2019, 39(6): 867-871. doi: 10.3969/j.issn.0258-0918.2019.06.001
    [8]
    张卫. 安全壳地坑过滤器下游效应(堆芯外)分析[J]. 核动力工程,2016, 37(3): 127-130.
    [9]
    刘蔚伟,夏小娇,马韦刚,等. 核电厂安全壳地坑过滤器化学效应试验研究[J]. 核动力工程,2019, 40(5): 124-129.
    [10]
    谢洪虎,李石磊,张峰,等. 核电厂安全壳内置换料水箱过滤系统过滤性能及阻力特性研究[J]. 核动力工程,2019, 40(6): 130-134.
    [11]
    USNRC. Parametric study of the potential for BWR ECCS strainer blockage due to LOCA generated debris, NUREG/CR—6224[R]. Washington, DC: USNRC, 1995
    [12]
    IDELCHIK I E. Handbook of hydraulic resistance[M]. 4th ed. Danbury: Begell House, 2008: 192-719.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (1506) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return