Advance Search
Volume 42 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Zhao Qingsen, Wang Shiyong. Research of Margin Matching between Steam Generator and Steam Turbine in Nuclear Power Plant[J]. Nuclear Power Engineering, 2021, 42(6): 174-178. doi: 10.13832/j.jnpe.2021.06.0174
Citation: Zhao Qingsen, Wang Shiyong. Research of Margin Matching between Steam Generator and Steam Turbine in Nuclear Power Plant[J]. Nuclear Power Engineering, 2021, 42(6): 174-178. doi: 10.13832/j.jnpe.2021.06.0174

Research of Margin Matching between Steam Generator and Steam Turbine in Nuclear Power Plant

doi: 10.13832/j.jnpe.2021.06.0174
  • Received Date: 2020-11-09
  • Rev Recd Date: 2021-04-16
  • Publish Date: 2021-12-09
  • Some of the nuclear power units of PWR newly put into operation in China have suffered from sharp shaking of the main steam control valve, slow pressure drop of new steam and other problems, which have certain impacts on the safety and economy of the unit. Through the comparison of the design parameters and the test data, and using the heat transfer calculation model to analyze, this study found that the design margin of 55/19B steam generator was lower than the similar 60F steam generator, and was also lower than the usual steam pressure margin of 1.6×105 Pa. The new steam pressure of the steam generator, the main steam control valve and the flow area of the steam turbine governing stage shall be comprehensively matched at the beginning of the design, especially the valves with linear regulation characteristics in the opening range of more than 70% shall be selected, so as to ensure the reliability and economy of the nuclear power unit throughout its lifetime.

     

  • loading
  • [1]
    中华人民共和国住房和城乡建设部. 核电厂常规岛设计规范: GB/T 50958—2013[S]. 北京: 中国计划出版社, 2014:10-12.
    [2]
    柴伟东,赵清森. CPR1000机组蒸汽发生器裕度问题分析[J]. 热力发电,2019, 48(3): 126-131.
    [3]
    赵清森. 核电机组蒸汽发生器沉积物及其管理[C]//中国电机工程学会. 中国电机工程 学会专题技术报告 2018(上卷). 北京: 中国电力出版社, 2018:149-156.
    [4]
    董威,黄美华,曾彬. 核电厂汽机主调节阀阀位波动问题研究[J]. 自动化仪表,2015, 36(11): 50-52+56.
    [5]
    王世勇,张卫东,石英,等. 核电厂堆机匹配主要接口参数优化[J]. 核电,2019(5): 43-47.
    [6]
    王为民, 李银凤, 刘万琨. 核能发电与核电厂水电热联产技术[M]. 北京: 化学工业出版社, 1998: 112-121.
    [7]
    《蒸汽发生器》编写组. 蒸汽发生器[M]. 北京: 中国原子能出版社, 1982: 65-129.
    [8]
    HU M H. A strategic thinking to draw benefit from tube scale for boiling enhancement[C]//Proceedings of EPRI 2003 Steam Generator Secondary Side Management Conference. Savanah, Georgia: 2003:727-763.
    [9]
    KREIDER M A, MORONEY V D, WHITE G A, et al. Industry SG heat-transfer fouling trends and probabilistic fouling predictions[C]//Proceedings of the 6th CNS International Steam Generator Conference Held in Toronto. Ontario, Canada: 2009
    [10]
    程振华,王国良. 核电厂凝结水精处理系统导致二回路水质钠离子浓度升高的原因分析与改进[J]. 核动力工程,2020, 41(6): 182-186.
    [11]
    李磊,张富源,何戈宁,等. 核电高效紧凑新型蒸汽发生器设计研究[J]. 核动力工程,2020, 41(1): 189-193.
    [12]
    卫栋梁,李曦滨,张小波,等. 东方1000 MW~1800 MW半转速核电汽轮机的热力设计特点[J]. 东方汽轮机,2009(S1): 15-19.
    [13]
    余炎. 西门子百万核电汽轮机通流部分设计特点[J]. 热力透平,2006, 35(1): 37-40. doi: 10.3969/j.issn.1672-5549.2006.01.008
    [14]
    朱丹书. 核电汽轮机的调节阀设计[J]. 汽轮机技术,1995, 37(5): 271-276+270.
    [15]
    徐嗣华. 1000 MW等级核电汽轮机高压阀门的设计特点[J]. 热力透平,2015, 44(4): 263-266.
    [16]
    徐大懋,邓德兵,王世勇,等. 汽轮机的特征通流面积及弗留格尔公式改进[J]. 动力工程学报,2010, 30(7): 473-477.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (339) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return