Citation: | Liu Ziming, Luo Neng, Ai Qiong. Research on Fault Pattern Recognition Model of Nuclear Power Plant Water Pump Based on Frequency-Domain Data Attention Mechanism[J]. Nuclear Power Engineering, 2021, 42(6): 203-208. doi: 10.13832/j.jnpe.2021.06.0203 |
[1] |
XIA M, LI T, XU L, et al. Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 101-110. doi: 10.1109/TMECH.2017.2728371
|
[2] |
ZHAO M H, ZHONG S S, FU X Y, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681-4690. doi: 10.1109/TII.2019.2943898
|
[3] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//3rd International Conference on Learning Representations. San Diego, CA, USA: ICLR, 2015: 1-14.
|
[4] |
ZHANG W, PENG G L, LI C H, et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17(2): 425. doi: 10.3390/s17020425
|
[5] |
VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579-2605.
|
[6] |
LI X, ZHANG W, DING Q. Understanding and improving deep learning-based rolling bearing fault diagnosis with attention mechanism[J]. Signal Processing, 2019(161): 136-154. doi: 10.1016/j.sigpro.2019.03.019
|
[7] |
YANG Z B, ZHANG J P, ZHAO Z B, et al. Interpreting network knowledge with attention mechanism for bearing fault diagnosis[J]. Applied Soft Computing Journal, 2020(97): 106829. doi: 10.1016/j.asoc.2020.106829
|
[8] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, CA, USA: NIPS, 2017: 5998-6008.
|