Advance Search
Volume 43 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Yu Wen, He Long, Zou Yang, Xu Bo, Dai Ye, Xu Hongjie. Preliminary Analysis of Unprotected Reactivity Introduction Accident of Liquid Molten Salt Reactor with Graphite Channel based on TREND Program[J]. Nuclear Power Engineering, 2022, 43(1): 78-83. doi: 10.13832/j.jnpe.2022.01.0078
Citation: Yu Wen, He Long, Zou Yang, Xu Bo, Dai Ye, Xu Hongjie. Preliminary Analysis of Unprotected Reactivity Introduction Accident of Liquid Molten Salt Reactor with Graphite Channel based on TREND Program[J]. Nuclear Power Engineering, 2022, 43(1): 78-83. doi: 10.13832/j.jnpe.2022.01.0078

Preliminary Analysis of Unprotected Reactivity Introduction Accident of Liquid Molten Salt Reactor with Graphite Channel based on TREND Program

doi: 10.13832/j.jnpe.2022.01.0078
  • Received Date: 2020-12-04
  • Rev Recd Date: 2021-01-29
  • Publish Date: 2022-02-01
  • Using the self-developed system analysis code TREND and based on the liquid point reactor dynamics model, aiming at the design of 10 MW liquid molten salt reactor with graphite channel, the transient changes of core power, graphite temperature and molten salt temperature at the core outlet of 10 MW liquid molten salt reactor with graphite channel with different reactivity under step introduction and linear introduction are studied and analyzed. The results show that the reactor system can operate safely without protection when the reactivity step introduction is lower than 570pcm (1pcm=10−5). When about 800pcm is introduced due to loss of lift of single control rod, the reactivity introduction rate does not exceed 8pcm/s, and the reactor can effectively control the peak power and reduce the core outlet temperature by making use of its own negative feedback characteristics of temperature and power, so as to ensure the safe operation of the reactor without protection. Therefore, liquid molten salt reactor has good inherent safety.

     

  • loading
  • [1]
    USDOE. A technology roadmap for generation IV nuclear energy systems[J]. Philosophical Review, 2002, 66(2): 239-241.
    [2]
    徐洪杰,戴志敏,蔡翔舟,等. 钍基熔盐堆和核能综合利用[J]. 现代物理知识,2018, 30(4): 25-34.
    [3]
    HARGRAVES R, MOIR R. Liquid fluoride thorium reactors: an old idea in nuclear power gets reexamined[J]. American Scientist, 2010, 98(4): 304-313. doi: 10.1511/2010.85.304.
    [4]
    MATHIEU L, HEUER D, BRISSOT R, et al. The thorium molten salt reactor: moving on from the MSBR[J]. Progress in Nuclear Energy, 2006, 48(7): 664-679. doi: 10.1016/j.pnucene.2006.07.005
    [5]
    江绵恒,徐洪杰,戴志敏. 未来先进核裂变能−TMSR核能系统[J]. 中国科学院院刊,2012, 27(3): 366-374. doi: 10.3969/j.issn.1000-3045.2012.03.016
    [6]
    ROBERTSON R C. Conceptual design study of a single-fluid molten-salt breeder reactor: ORNL-4541[R]. Oak Ridge: ORNL, 1971.
    [7]
    魏泉,梅龙伟,战志超,等. 液态熔盐堆运行安全特性初步研究[J]. 原子能科学技术,2014, 48(12): 2280-2286. doi: 10.7538/yzk.2014.48.12.2280
    [8]
    NESTOR JR C W. Murgatroyd – an IBM 7090 program for the analysis of the kinetics of the MSRE: ORNL-TM-203[R]. USA: Atomic Energy Commission, 1962
    [9]
    KŘEPEL J, GRUNDMANN U, ROHDE U, et al. DYN1D-MSR dynamics code for molten salt reactors[J]. Annals of Nuclear Energy, 2005, 32(17): 1799-1824. doi: 10.1016/j.anucene.2005.07.007
    [10]
    SHI C B, CHENG M S, LIU G M. Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code[J]. Nuclear Engineering and Design, 2016, 305: 378-388. doi: 10.1016/j.nucengdes.2016.05.034
    [11]
    阮见. 熔盐堆系统瞬态分析程序开发[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2018.
    [12]
    YU W, RUAN J, HE L, et al. Development of TREND dynamics code for molten salt reactors[J]. Nuclear Engineering and Technology, 2021, 53(2): 455-465. doi: 10.1016/j.net.2020.07.030
    [13]
    SIEDER E N, TATE G E. Heat transfer and pressure drop of liquids in tubes[J]. Industrial & Engineering Chemistry, 1936, 28(12): 1429-1435.
    [14]
    GNIELINSKI V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16(2): 359-368.
    [15]
    茹卡乌斯卡斯. 换热器内的对流传热[M]. 马昌文, 译. 北京: 科学出版社, 1986: 337-370.
    [16]
    Haynes International, Inc. HASTELLOY® N alloy: H-2052B[R]. USA: Haynes International, Inc, 2002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (295) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return