Advance Search
Volume 43 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Liu Shiwen, Li Yi, Cheng Xiang, Bian Haozhi, Cao Boyang, Ding Ming. Study on the Effects of Tube Diameter and Inclination Angle on the Condensation Heat Transfer of Air-Containing Steam Outside the Tube Bundle[J]. Nuclear Power Engineering, 2022, 43(1): 92-96. doi: 10.13832/j.jnpe.2022.01.0092
Citation: Liu Shiwen, Li Yi, Cheng Xiang, Bian Haozhi, Cao Boyang, Ding Ming. Study on the Effects of Tube Diameter and Inclination Angle on the Condensation Heat Transfer of Air-Containing Steam Outside the Tube Bundle[J]. Nuclear Power Engineering, 2022, 43(1): 92-96. doi: 10.13832/j.jnpe.2022.01.0092

Study on the Effects of Tube Diameter and Inclination Angle on the Condensation Heat Transfer of Air-Containing Steam Outside the Tube Bundle

doi: 10.13832/j.jnpe.2022.01.0092
  • Received Date: 2020-11-26
  • Rev Recd Date: 2020-12-16
  • Publish Date: 2022-02-01
  • Through condensation tests of air-containing steam outside the tube against the 3×3 tube bundle with different tube diameters and inclination angles, the basic laws of heat transfer tube diameter and inclination angle affecting the condensation heat transfer of air-containing steam outside the tube bundle are studied. The results show that the effects of tube diameter and inclination angle are significantly different in different pressure ranges. At pressures below 0.8 MPa, the condensation heat transfer coefficient increases with the decrease of tube diameter and inclination angle, and the condensation heat transfer coefficient of 12 mm and 0° inclination angle heat transfer tube is 29% higher than that of 19 mm and 90° inclination angle. At pressures above 0.8 MPa, the condensation heat transfer coefficient decreases with the decrease of the tube diameter, up to 18%; with the decrease of the inclination angle, the condensation heat transfer coefficient first decreases and then increases, and the condensation heat transfer coefficient is the smallest at an inclination angle of about 60°.

     

  • loading
  • [1]
    张东洋. 竖直光管管外含空气蒸汽冷凝特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
    [2]
    BIAN H Z, SUN Z N, ZHANG N, et al. A new modified diffusion boundary layer steam condensation model in the presence of air under natural convection conditions[J]. International Journal of Thermal Sciences, 2019, 145: 105948. doi: 10.1016/j.ijthermalsci.2019.05.004
    [3]
    焦保良. 浅谈国内外核电技术发展现状及前景[J]. 科技信息,2010(34): 346-347. doi: 10.3969/j.issn.1001-9960.2010.34.308
    [4]
    DE LA ROSA J C, ESCRIVÁ A, HERRANZ L E, et al. Review on condensation on the containment structures[J]. Progress in Nuclear Energy, 2009, 51(1): 32-66. doi: 10.1016/j.pnucene.2008.01.003
    [5]
    BIAN H Z, SUN Z N, ZHANG N, et al. A preliminary assessment on a two-phase steam condensation model in nuclear containment applications[J]. Annals of Nuclear Energy, 2018, 121: 615-625. doi: 10.1016/j.anucene.2018.08.012
    [6]
    BIAN H Z, SUN Z N, DING M, et al. Local phenomena analysis of steam condensation in the presence of air[J]. Progress in Nuclear Energy, 2017, 101: 188-198. doi: 10.1016/j.pnucene.2017.08.002
    [7]
    UCHIDA H, OYAMA A, TOGO Y. Evaluation of post-incident cooling systems of light water power reactors[R]. Japan: Tokyo University, 1964.
    [8]
    LIU H, TODREAS N E, DRISCOLL M J. An experimental investigation of a passive cooling unit for nuclear plant containment[J]. Nuclear Engineering and Design, 2000, 199(3): 243-255. doi: 10.1016/S0029-5493(00)00229-6
    [9]
    DEHBI A A. Analytical and experimental investigation of the effects of non-condensable gases on steam condensation under turbulent natural convection conditions[D]. USA: Massachusetts Institute of Technology, 1990.
    [10]
    FAN G M, TONG P, SUN Z N, et al. Development of a new empirical correlation for steam condensation rates in the presence of air outside vertical smooth tube[J]. Annals of Nuclear Energy, 2018, 113: 139-146. doi: 10.1016/j.anucene.2017.11.021
    [11]
    SU J Q, SUN Z N, FAN G M, et al. Experimental study of the effect of non-condensable gases on steam condensation over a vertical tube external surface[J]. Nuclear Engineering and Design, 2013, 262: 201-208. doi: 10.1016/j.nucengdes.2013.05.002
    [12]
    边浩志,孙中宁,丁铭, 等. 含空气蒸汽冷凝换热特性的数值模拟分析[J]. 哈尔滨工程大学学报,2019, 40(2): 426-432.
    [13]
    全标,边浩志,丁铭,等. 管束效应对含空气蒸汽冷凝传热影响数值分析[J]. 核动力工程,2019, 40(5): 61-66.
    [14]
    杨世铭, 陶文铨. 传热学[M]. 第3版. 北京: 高等教育出版社, 1998: 447.
    [15]
    约翰·道尔顿. 道尔顿分压定律[J]. 数理化学习,2019(12): 2.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (325) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return