Citation: | Yin Chunyu, Liu Rong, Jiao Yongjun, Qiu Chenjie, Liu Zhenhai, Qiu Bowen, Gao Shixin, Xing Shuo. Fuel Performance Analysis of Light Water Reactor Based on the Combination of U3Si2 Fuel and Two-Layer SiC Cladding Based on Multi-Physical Field Coupling[J]. Nuclear Power Engineering, 2022, 43(1): 102-109. doi: 10.13832/j.jnpe.2022.01.0102 |
[1] |
YUAN Y. The design of high power density annular fuel for LWRs[D]. Cambridge: Massachusetts Institute of Technology, 2004.
|
[2] |
ZHOU W Z, LIU R, REVANKAR S T. Fabrication methods and thermal hydraulics analysis of enhanced thermal conductivity UO2-BeO fuel in light water reactors[J]. Annals of Nuclear Energy, 2015, 81: 240-248. doi: 10.1016/j.anucene.2015.02.044
|
[3] |
YEO S, MCKENNA E, BANEY R, et al. Enhanced thermal conductivity of uranium dioxide-silicon carbide composite fuel pellets prepared by Spark Plasma Sintering (SPS)[J]. Journal of Nuclear Materials, 2013, 433(1-3): 66-73. doi: 10.1016/j.jnucmat.2012.09.015
|
[4] |
WHITE J T, NELSON A T, DUNWOODY J T, et al. Thermophysical properties of U3Si2 to 1773 K[J]. Journal of Nuclear Materials, 2015, 464: 275-280. doi: 10.1016/j.jnucmat.2015.04.031
|
[5] |
SINGH G, TERRANI K, KATOH Y. Thermo-mechanical assessment of full SiC/SiC composite cladding for LWR applications with sensitivity analysis[J]. Journal of Nuclear Materials, 2018, 499: 126-143. doi: 10.1016/j.jnucmat.2017.11.004
|
[6] |
GAMBLE K A, BARANI T, PIZZOCRI D, et al. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions[J]. Journal of Nuclear Materials, 2017, 491: 55-66. doi: 10.1016/j.jnucmat.2017.04.039
|
[7] |
LIU R, CAI J J, ZHOU W Z. Multiphysics modeling of thorium-based fuel performance with a two-layer SiC cladding in a light water reactor[J]. Annals of Nuclear Energy, 2020, 136: 107036. doi: 10.1016/j.anucene.2019.107036
|
[8] |
LASSMANN K, O'CARROLL C, VAN DE LAAR J, et al. The radial distribution of plutonium in high burnup UO2 fuels[J]. Journal of Nuclear Materials, 1994, 208(3): 223-231. doi: 10.1016/0022-3115(94)90331-X
|
[9] |
HALES J D, NOVASCONE S R, PASTORE G, et al. BISON theory manual the equations behind nuclear fuel analysis[R]. Idaho Falls: Idaho National Laboratory, 2013.
|
[10] |
SHIMIZU H. The properties and irradiation behavior of U3Si2[R]. Canoga Park: Atomics International, 1965.
|
[11] |
WHITE J T, NELSON A T, DUNWOODY J T, et al. Thermophysical properties of U3Si2 to 1773 K[J]. Journal of Nuclear Materials, 2015, 464: 275-280.
|
[12] |
FINLAY M R, HOFMAN G L, SNELGROVE J L. Irradiation behaviour of uranium silicide compounds[J]. Journal of Nuclear Materials, 2004, 325(2-3): 118-128. doi: 10.1016/j.jnucmat.2003.11.009
|
[13] |
CARVAJAL-NUNEZ U, SALEH T A, WHITE J T, et al. Determination of elastic properties of polycrystalline U3Si2 using resonant ultrasound spectroscopy[J]. Journal of Nuclear Materials, 2018, 498: 438-444. doi: 10.1016/j.jnucmat.2017.11.008
|
[14] |
GAMBLE K A, PASTORE G, ANDERSSON D, et al. ATF material model development and validation for priority fuel concepts[D]. Idaho Falls: Idaho National Laboratory, 2019: 21-31.
|
[15] |
MIELOSZYK A J. Assessing thermo-mechanical performance of ThO2 and SiC clad light water reactor fuel rods with a modular simulation tool[D]. Cambridge: Massachusetts Institute of Technology, 2015.
|
[16] |
李鸣,张瑞谦,何宗倍,等. 耐事故SiCf/SiC复合材料包壳管CVI+无模具NITE制备技术研究[J]. 核动力工程,2020, 41(S1): 169-173.
|
[17] |
LIU R, PRUDIL A, ZHOU W Z, et al. Multiphysics coupled modeling of light water reactor fuel performance[J]. Progress in Nuclear Energy, 2016, 91: 38-48. doi: 10.1016/j.pnucene.2016.03.030
|
[18] |
莫华均,张伟,吴璐,等. 耐事故UO2基复合燃料芯块的研发进展[J]. 核动力工程,2020, 41(2): 36-39.
|