Citation: | Song Jian, Yu Hongxing, Deng Jian, Xiang Qing'an, He Xiaoqiang. Marginal Research on IVR Capability of Alumina Nanofluid Enhanced Spherical Lower Head[J]. Nuclear Power Engineering, 2022, 43(1): 156-162. doi: 10.13832/j.jnpe.2022.01.0156 |
[1] |
CILOGLU D, BOLUKBASI A. A comprehensive review on pool boiling of nanofluids[J]. Applied Thermal Engineering, 2015, 84: 45-63. doi: 10.1016/j.applthermaleng.2015.03.063
|
[2] |
KIM H D, KIM J, KIM M H. Experimental studies on CHF characteristics of nano-fluids at pool boiling[J]. International Journal of Multiphase Flow, 2007, 33(7): 691-706. doi: 10.1016/j.ijmultiphaseflow.2007.02.007
|
[3] |
何晓强,余红星,江光明. 氧化铝纳米流体临界热流密度机理模型研究−物理模型[J]. 核动力工程,2018, 39(3): 162-165.
|
[4] |
REMPE J L, KNUDSON D L, ALLISON C M, et al. Potential for AP600 in-vessel retention through ex-vessel flooding[R]. Washington: USDOE Assistant Secretary for Nuclear Energy, 1997.
|
[5] |
何晓强,余红星,王金雨,等. 氧化铝纳米流体临界热流密度机理模型验证[J]. 核动力工程,2019, 40(2): 6-9.
|
[6] |
HAM J, CHO H. Theoretical analysis of pool boiling characteristics of Al2O3 nanofluid according to volume concentration and nanoparticle size[J]. Applied Thermal Engineering, 2016, 108: 158-171. doi: 10.1016/j.applthermaleng.2016.07.058
|
[7] |
袁杨,李祥东,屠基元. 纳米流体沸腾模型中某些物理参数的理论探讨[J]. 清华大学学报:自然科学版,2015, 55(7): 815-820.
|
[8] |
PHAM Q T, KIM T I, LEE S S, et al. Enhancement of critical heat flux using nano-fluids for invessel retention-external vessel cooling[J]. Applied Thermal Engineering, 2012, 35: 157-165. doi: 10.1016/j.applthermaleng.2011.10.017
|